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Abstract: One of the main necessities for population geneticists is the availability of sensitive statistical
tools that enable to accept or reject the standard Wright–Fisher model of neutral evolution. A number
of statistical tests have been developed to detect specific deviations from the null frequency spectrum
in different directions (e.g., Tajima’s D, Fu and Li’s F and D tests, Fay and Wu’s H). A general
framework exists to generate all neutrality tests that are linear functions of the frequency spectrum.
In this framework, it is possible to develop a family of optimal tests with almost maximum power
against a specific alternative evolutionary scenario. In this paper we provide a thorough discussion
of the structure and properties of linear and nonlinear neutrality tests. First, we present the general
framework for linear tests and emphasise the importance of the property of scalability with the
sample size (that is, the interpretation of the tests should not depend on the sample size), which, if
missing, can lead to errors in interpreting the data. After summarising the motivation and structure of
linear optimal tests, we present a more general framework for the optimisation of linear tests, leading
to a new family of tunable neutrality tests. In a further generalisation, we extend the framework to
nonlinear neutrality tests and we derive nonlinear optimal tests for polynomials of any degree in the
frequency spectrum.

Keywords: coalescent theory; site frequency spectrum; neutrality test; statistical power; summary statistics

1. Introduction

Since the development of molecular genetics techniques allowed to obtain nucleotide
sequences for the study of populations genetics [1], a number of neutrality tests have been
developed with the objective to facilitate the interpretation of an increasing volume of
molecular data. Statistical tests for neutrality have been generated exploiting the different
properties of the stationary neutral model. Examples of tests are the HKA [2], which takes
advantage of the polymorphism/divergence relationship across independent loci in a multi-
locus framework, and the Lewontin–Krakauer test [3], which looks for an unexpected level
of population differentiation in a locus in relation to other loci. Additionally, another family
of popular tests are the ones related to linkage disequilibrium, such as the one developed
by [4], which detects long haplotypes at unusual elevated frequencies in candidate regions.

An important family of these tests, often used as summary statistics, is built on the
frequency spectrum of biallelic polymorphisms. This family includes the well known tests
by Tajima [5], Fu and Li [6], and Fay and Wu [7]. If an outgroup is available, these tests are
based on the unfolded spectrum ξi, that is, the number of segregating sites with a derived
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allele frequency of i in a sample of (haploid) size n. Without an outgroup, it is not possible
to distinguish derived and ancestral alleles and the only available data correspond to the
folded spectrum ηi, that is, the number of segregating sites with a minor allele frequency of
i. The quantities ξi and ηi are all positive and the range of allele frequencies is 1 ≤ i ≤ n− 1
for the unfolded spectrum, 1 ≤ i ≤ bn/2c for the folded spectrum. The average spectra for
the standard Wright–Fisher neutral model are given by:

E(ξi) =
1
i

θL , E(ηi) =
n

i(n− i)(1 + δi,n−i)
θL , (1)

where L is the length of the sequence and θ = 2pµNe, where µ is the mutation rate per base,
p is the ploidy and Ne is the effective population size. Note that we define θ as the rescaled
mutation rate per base and not per sequence. Apart from this, we follow the notation
of [8,9]. Note that the spectra are proportional to θ.

A general framework for linear tests was presented in [8]. The general tests proposed
there were of the form:

TΩ =
∑n−1

i=1 iΩiξi√
Var
(

∑n−1
j=1 jΩjξ j

) , T∗Ω =
∑
bn/2c
i=1 iΩ∗i ηi√

Var
(

∑
bn/2c
j=1 jΩ∗j ηj

) (2)

that are centred (i.e., they have a null expectation value) if the weights Ωi, Ω∗i satisfy the

conditions ∑n−1
i=1 Ωi = 0 and ∑

bn/2c
i=1 Ω∗i = 0. This framework allows the construction of

many new neutrality tests and has been used to obtain optimal tests for specific alternative
scenarios [10]. However, the original framework does not take into account the dependence
of the tests on the sample size, as emphasised in [10]. It is important to choose this
dependence in order to obtain results that are as independent as possible on sample size.
Moreover, the framework presented in [8] covers just a large subfamily of neutrality tests
based on the frequency spectrum, that is, the class of tests that are linear functions of the
spectrum. This subfamily contains almost all the tests that can be found in the literature
with the exception of the Gξ , Gη tests of Fu [11], which are second order polynomials
in the spectrum whose form is related with Hotelling statistics. Since these Gξ , Gη tests
were shown to be quite effective in some scenarios, it would be interesting to build a
general framework for these quadratic (and more generally nonlinear) tests. New optimal
tests based on extensions of the site frequency spectrum [12,13] were recently applied
successfully to the detection of selection pressure on human chromosomal inversions [14].

In this work we provide a detailed study of the properties of the whole family of tests
based on the site frequency spectrum, i.e., focus on the structure and the properties of
neutrality tests that consider the frequency of the variants per position. Technical details
and proofs can be found in Appendices A and B.

We begin with the discussion of the most interesting case, i.e., linear tests. Achaz [8]
developed a general framework for constructing linear tests comparing two different
estimators of variability, which are based on linear combinations of the frequency, each one
containing different weights. We summarise his approach in the Section 2.1.

In Section 2.2, we discuss the importance of scaling the weights with the aim to
avoid a dependence with the sample size. This allows us to interpret the information of
the test in the same way for any sample size analysed. We provide a thorough analysis
of a simple proposal for the scaling of the tests with the sample size. Different scaling
strategies (including alternatives to scaling) are analysed and evaluated, demonstrating
the importance but also the suitability of different weighting methods depending on the
nature of the statistic.

In Section 2.3, we present and expand the theory of optimal tests, i.e., tests that
have maximum power to detect an alternative scenario versus a null scenario, introduced
in [10]. We show that generic linear tests cannot detect arbitrary deviations from the neutral
spectrum, and why tests must be optimised with respect to a specific alternative scenario. A
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geometrical interpretation of neutrality test is developed, showing how these tests depend
on the differences between the null and the alternative scenario, clarifying the theoretical
basis for these tests.

In Section 2.4, we extend this approach to nonlinear tests that consider different
moments of the frequency spectrum combined in generic polynomials or in power series.
In contrast to linear tests, nonlinear tests are dependent on the level of variability θ and
thus need an accurate estimation of θ to have good statistical properties (e.g., unbiased,
high statistical power). These tests are classified in strongly and weakly centred (that is,
having null expectation value). Strongly centred tests are those tests that are centred for
any value for any estimate of θ, even if this estimate is far from the actual value, and thus
are more robust to deviations of θ estimates than weakly centred tests (simulations shown
already in the Results section (Section 3)). Instead, weakly centred tests are only centred
if the θ estimate is equal to the actual value, but this feature also makes the tests more
powerful if the inference of θ is reliable.

In Section 3.1 in the Results, we see some consequences of the framework outlined
in Methods; it is possible to optimise neutrality tests following a general maximisation
approach that depends on the proxy used for the power to reject the null model in the
alternative scenario, which depends on the mean spectra, the covariance matrices, and
the critical p-value used. Moreover, we show that under some conditions, the power
maximisation can be always achieved by tuning a parameter in a new family of linear
“tunable” optimal tests developed here, which depend only on the mean spectra of the
alternative model.

In Section 3.2, we present the results for the power to detect deviations from the neutral
spectrum in coalescent simulations. We show how linear optimal tests have more power
than usual neutrality tests such as Tajima’s D, nonlinear optimal tests are more powerful
than linear ones, and weakly centred tests are more powerful than strongly centred ones if
θ is known.

In summary, our research augments the understanding of neutrality tests, encompassing
weight normalisation, optimal test formulation, and both linear and nonlinear paradigms.
The outcome not only enriches theoretical foundations but also provides novel methodologies
for increasing power and effectiveness of neutrality tests across diverse scenarios.

2. Material and Methods
2.1. Linear Neutrality Tests
General Framework

As discussed by Achaz [8], the general form for linear tests based on the unfolded
spectrum can be written as:

TΩ =
∑n−1

i=1 iΩiξi√
Var
(

∑n−1
j=1 jΩjξ j

) (3)

where Ωi is a set of weights satisfying the condition:

n−1

∑
i=1

Ωi = 0 . (4)

This is the most general form if we require that the test is centred and with variance
1, that is, E(TΩ) = 0 and Var(TΩ) = 1. The condition of intendedness can be obtained
substituting the spectrum with its average in the standard neutral model, given by the
Equation (1).
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Alternatively, it is sufficient to choose any pair of unbiased estimators of θ based on
the unfolded spectrum:

θ̂ω =
1
L

n−1

∑
i=1

iωiξi , θ̂ω′ =
1
L

n−1

∑
i=1

iω′iξi (5)

with weights ωi, ω′i that obey the conditions:

n−1

∑
i=1

ωi = 1 ,
n−1

∑
i=1

ω′i = 1 (6)

to obtain a new test for neutrality:

TΩ =
θ̂ω − θ̂ω′√

Var(θ̂ω − θ̂ω′)
=

∑n−1
i=1 i(ωi −ω′i)ξi√

Var
(

∑n−1
j=1 j(ωj −ω′j)ξ j

) =
∑n−1

i=1 iΩiξi√
Var
(

∑n−1
j=1 jΩjξ j

) (7)

that is equivalent to the definition (3) with Ωi = ωi −ω′i . Therefore a test TΩ is defined by
real vectors Ω or ω, ω′ satisfying the above normalisation conditions.

2.2. Sample Size Independent Tests
2.2.1. Scaling of Weights with Sample Size

In this section we would like to remark that there are conditions that have to be im-
posed on the weights Ωi or ωi, ω′i to ensure that these tests are consistent and meaningful
in their interpretation. In fact, the values (and even the number!) of these weights depend
explicitly on sample size n. Since every conceivable test should be applied to samples of dif-
ferent sizes, then its definition involves a whole family of weights

{
Ω(n)

i

}
or
{

ω
(n)
i , ω

′(n)
i

}
with n = 2, 3 . . . ∞ and to define a test it is necessary to specify how these weights scale
with n.

As an example of the weird effects of some choices of scaling, we consider the test for
admixture of [8]. The weights of this test are ωi = (n

i )2
−n(1− 2−n+1)−1 and ω′i = 1/(n− 1).

Suppose that the population under study shows an excess of alleles of frequency f between
0.3 and 0.4. The average weight of these frequencies, rescaled by the sample size, is 0.5 for
n = 10, but it reduces to −0.75 for n = 100 and to −1.0 for n = 1000. These weights are
largely different, even in sign, therefore a strong excess of alleles in this range of frequency
would show itself as either a positive or a negative value for this test, depending on the
sample size! The reason can be understood by noticing that for n large, the binomial can be
approximated by a Gaussian function of the allele frequencies f = i/n centred in f = 1/2
and with variance 1/4n. Therefore this weight function has a strong dependence on n when
considered as a function of f and n. The changes of this weight function with sample size
are apparent in the plot of Figure 1, which shows the actual function (rescaled by sample
size) for n = 101,001,000.

In this example it is apparent that the interpretation of the results of this test depends
on n. This means that the calibration of the test should be different for each possible
sample size.

The weight-consistency requirement that we propose is that the result of the test
should be almost independent of sample size. This requirement is equivalent to a condition
on the scaling of the weights Ω(n)

i with n. Our proposal for a reasonable requirement on
this scaling is the following: the relative weight of different frequencies in the population
should remain approximately constant while varying the size of the sample. This condition
ensures that at least for sufficiently large n, the average values of the test on samples of
different size from the same population should be approximately independent on sample
size, i.e., that the test should be weight-consistent. Note that this requirement has to do with
the interpretation of the test, rather than with the usual definition of statistical consistency.
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Tests that are not weight-consistent could be statistically consistent, but the interpretation
of results in the left and right tails would not be assured to be independent of sample size.
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Figure 1. Illustrative example of the dependence of the weight on sample size: weight Ω as a function
of i/n for the test for admixture by Achaz, plotted for different sample size n = 10 (blue), 100 (red),
1000 (green).

To determine the scaling, we note that in limit of large n, the frequency spectrum
approaches a continuum and we can define the weights as functions Ω( f ) or ω( f ), ω′( f )
with f ∈ (0, 1) and

∫ 1
0 d f Ω( f ) = 0,

∫ 1
0 d f ω( f ) =

∫ 1
0 d f ω′( f ) = 1. Since the ratio of the

derived allele count and the sample size i/n is an unbiased estimator of the frequency f of
the allele in the population (because E(i) = n f ), a simple scaling that satisfies the above
requirement is:

Ω(n)
i ' Ω(i/n) or ω

(n)
i ' ω(i/n) , ω

′(n)
i ' ω′(i/n) (8)

as proposed by some of the authors in [10].
In order to have the above approximate scaling while obeying the condition

∑n−1
i=1 Ωi = 0, there are two simple weight-consistent forms for the weights:

Ω(n)
i = Ω

(
i
n

)
− 1

n− 1

n−1

∑
j=1

Ω
(

j
n

)
(9)

where the last term is a (typically small) correction that enforce centredness of the test, or:

Ω(n)
i = ω

(n)
i −ω

′(n)
i =

ω
(

i
n

)
∑n−1

j=1 ω
(

j
n

) − ω′
(

i
n

)
∑n−1

j=1 ω′
(

j
n

) (10)

where the denominators are normalisation factors.
Typically, this second form (10) for the scaling is more consistent in practice and it

is implicitly assumed for most of the existing tests. However, the above expressions give
similar numerical results for most choices of the functions Ω( f ) = ω( f )−ω′( f ). In fact, if
Ω( f ) is a limited and piecewise-continuous function, the difference between (9) and (10) is
of order O(Ω)/n (since it is a factor coming from the discretisation of the frequencies) and
it does not have a relevant impact on the results of the test. Therefore, in these cases the
two scaling relations (9) and (10) are practically equivalent.
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Note that all the tests involving the Watterson estimator (that corresponds to ω( f ) ∼ 1/ f )
have additional subtleties that are discussed in the next section.

Example: Fay and Wu’s H test

This test was proposed in [7] to look for an excess of high-frequency derived alleles
as a signal of selection. It can be defined by the weight functions ω( f ) = 2(1− f ) and
ω′( f ) = 2 f or alternatively ω( f ) = 1 and ω′( f ) = 2 f . The weights can be found following
Equation (10). The resulting test is:

TH =

1
n−1 ∑n−1

i=1 iξi − 2
n(n−1) ∑n−1

i=1 i2ξi√
Var
(

1
n−1 ∑n−1

j=1 jξ j − 2
n(n−1) ∑n−1

j=1 j2ξ j

) (11)

The scaling defined in Equation (9), with weight function Ω( f ) = ω( f )−ω′( f ) = 1− 2 f ,
gives precisely the same result.

Example: F(r, r′) tests of Fu [15]

This large class of test is based on the comparison of two estimators with weights:

ωi =
i−r

∑n−1
j=1 j−r

, ω′i =
i−r′

∑n−1
j=1 j−r′

(12)

that in the case r, r′ < 1 correspond precisely to the scaling (10) suggested above, with
weight functions ω( f ) = (1− r) f−r and ω′( f ) = (1− r′) f−r′ . This can be easily verified
by multiplying both the numerator and the denominator of ωi, ω′i by a factor (1− r)/n−r,
(1− r′)/n−r′ respectively. The test by Fay and Wu corresponds actually to F(0,−1).

The cases with r ≥ 1 or r′ ≥ 1 involve weight functions with divergent integrals and
will be discussed in the next section.

Note that the same weight functions with the scaling (9) would give rise to a slightly
different test with weights:

Ωi = (1− r)
(

i
n

)−r
− (1− r′)

(
i
n

)−r′

−

 (1− r)∑n−1
j=1 j−r

(n− 1)n−r −
(1− r′)∑n−1

j=1 j−r′

(n− 1)n−r′

 (13)

that is not weight-consistent for weights of low frequency alleles, i.e., with i/n . n2/ max(r,r′),
and is therefore less interesting.

Example: Test for bottleneck of Achaz [8]

This test is another example of a test with an unwanted scaling:

ωi =
e−αi

∑n−1
j=1 e−αj

, ω′i =
1

n− 1
(14)

The weight function for this test is e−αn f αn/(1− e−αn)− 1 that depends strongly on
n, therefore this test is not weight-consistent in the above sense.

It is easy to build an equivalent test with the correct scaling by choosing the functions
ω( f ) = βe−β f /(1− e−β), ω′( f ) = 1. The resulting weights with the scaling (10) are:

ωi =
e−βi/n

∑n−1
j=1 e−βj/n

=
1− e−β/n

1− e−β(1−1/n)
e−β(i−1)/n , ω′i =

1
n− 1

(15)

as discussed before. The optimal value reported in [8] is α ' 0.9 for n = 30. This value
corresponds to β ' 27.
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The test can also be implemented by choosing the scaling (9) and the weight function
Ω( f ) = ω( f )−ω′( f ) = βe−β f /(1− e−β)− 1. The resulting weights are:

Ωi =
βe−βi/n

1− e−β
− 1− 1

n− 1

(
β(1− e−β(1−1/n))

(1− e−β)eβ/n(1− e−β/n)
− (n− 1)

)
= (16)

=
β(1− e−β(1−1/n))

(1− e−β)eβ/n(1− e−β/n)
·
(

1− e−β/n

1− e−β(1−1/n)
e−β(i−1)/n − 1

n− 1

)

that are equivalent to the weights (15) up to an irrelevant multiplicative factor (see Theorem A1).
Therefore, in this case the two choices of scaling give precisely the same result.

2.2.2. Divergent Weights

As discussed above, the two choices of scaling in Equations (9) and (10) do not usually
obtain sensibly different numerical results. However, there are important choices of Ω( f )
for which this approximate equivalence between (9) and (10) does not hold. These critical
cases correspond to functions that diverge as 1/ f or faster near f = 0 (or f = 1). This
divergence is not a real feature of the distribution, because the integral has a natural
cutoff at the scale of the inverse population size fmin = 1/N (more precisely, the effective
population size 1/Ne, but this does not affect the discussion). However, in this case the
integral

∫ 1
1/N d f Ω( f ) has a strong dependence on the cutoff 1/N and therefore the function

Ω( f ) itself should depend strongly on N to ensure proper normalisation.
If this dependence is contained in a multiplicative term in front of ω( f ) or ω′( f ) or

both, then the second term in Equation (9) is not a small correction of order 1/n as it happens
with simple functions Ω( f ), but rather it represents a relevant correction with a strong
dependence on sample size n and population size N. The denominators in Equation (10)
also show a strong dependence on n (that could not be avoided anyway) but not on N,
and therefore this second scaling form should be used. The dependence on sample size is
as strong as the dependence of the divergent integral from the cutoff. This can be easily
understood by noticing that the sample size n plays the role of the cutoff in the sum over the
frequencies that are present in the sample, which is the same role played by the population
size N for the whole population; more formally, the denominator in Equation (10) can
be bounded from above and from below by the divergent integral, and therefore the
divergence of the denominator as n→ ∞ will be the same as the divergence of the integral
as its inverse cutoff (that is, N) goes to infinity). For functions diverging as f−k with k ≥ 1,
the dependence on n goes as n1−k if k > 1 or log(n) for k = 1. This case always occurs
when the test is built by comparing an estimator of θ with the Watterson estimator, which
corresponds to ω( f ) ∼ 1/ f and therefore has a logarithmic dependence on n given by the
usual harmonic factor an = ∑n−1

j=1 1/j ' log(n) + γ + O(1/n). A well-known example of
this case is Tajima’s D [5].

If the dependence of Ω( f ) on N is contained in an additive term that does not depend
on f , it is the correction in (9) that does not depend on N and therefore the first scaling
form is more appropriate. We do not know examples of tests of this kind in the literature,
even if the test by Zeng et al. [16] can be interpreted also in this way.

Example: Tajima’s D test

This is the most known test for neutrality based on the frequency spectrum. It is given
by the difference between the Tajima estimator Π [17] based on the nucleotide pairwise
diversity Π and the Watterson estimator θW [18] based on the number S of segregating
sites, therefore it can be defined by the weight functions ω( f ) = 2(1 − f ) for Π and
ω′( f ) = 1/ f log(N) for the Watterson estimator. The latter function has an integral that
diverges logarithmically near f = 0, and the corresponding dependence on N is contained
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in the factor 1/ log(N) that multiplies ω′( f ), therefore the scaling (10) should be used. The
result is the usual test:

TD =
∑n−1

i=1
2i(n−i)
n(n−1) ξi − S/an√

Var
(

∑n−1
j=1

2j(n−j)
n(n−1) ξ j − S/an

) =
Π− S/an√

Var(Π− S/an)
(17)

Example: Test of Zeng et al. [16]

This test was proposed to look for an excess of high-frequency derived alleles com-
pared to low-frequency alleles. It is defined by the weight functions ω( f ) = 1/ f log(N)
and ω′( f ) = 1, the former corresponding to the Watterson estimator. Proceeding as in the
above example, the result is:

TE =
S/an −∑n−1

i=1
i

(n−1) ξi√
Var
(

S/an −∑n−1
j=1

j
(n−1) ξ j

) (18)

Note that, exceptionally, the scaling of this test can also be defined by (9), without
modifying the result. This is a consequence of the two equivalent forms for the weight
function, Ω( f ) = 1/ f log(N)− 1 or Ω( f ) = 1/ f − log(N).

2.2.3. Weights of Singletons

The above scaling (8) is valid in principle for all weights. However, in practice there
is an important exception, that is, the weight Ω1 of singletons. This is due to the fact that
for n � N, the number of derived singletons ξ1 is the only estimator that is affected by
very rare derived alleles (and often by sequencing errors, see [19]). More precisely, ξ1 is
actually the only estimator sensitive to the deviations from neutrality in alleles of frequency
1/N < f < 1/n, which represent a vast majority of the SNPs in the population and can
contain interesting biological information. Therefore, if the contribution of these alleles is
relevant for the test, we can enhance (or reduce) the weight Ω1 by adding a factor Ωds.

In the approach detailed in the previous sections, this additional contribution to Ω1 is needed
to take into account a contribution ∆Ω( f ) to Ω( f ) of the form ∆Ω( f ) = Ωds I( f < φ)/φ with
φ � 1. As far as the maximum sample size never exceeds in practice nmax � 2/φ, this
function weights positively only alleles that appear as singletons.

Similarly, ω1 and ω′1 can be enhanced by ωds, ω′ds that correspond to contributions
∆ω( f ) = ωds I( f < φ)/φ, ∆ω′( f ) = ω′ds I( f < φ)/φ. The test of Fu and Li [6] fall into
this case.

A similar argument applies also to the weights of the number of ancestral singletons,
that is, Ωn−1, ωn−1, ω′n−1 that can be enhanced by factors Ωas, ωas, and ω′as respectively.
However, this case is more rare, the only interesting example being the tests of Achaz [19]
that avoid sequencing errors by neglecting both derived and ancestral singletons.

Summarising the results up to this section, a test TΩ is completely defined by a function
Ω( f ) and two parameters Ωds, Ωas (that could depend on n) satisfying the conditions:

Ωds + Ωas +
∫ 1

0
d f Ω( f ) = 0 (19)

and determining the weights through the formula:

Ω(n)
i = Ω

(
i
n

)
+ Ωdsδi,1 + Ωasδi,n−1 −

1
n− 1

(
Ωds + Ωas +

n−1

∑
j=1

Ω
(

j
n

))
(20)
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or by a pair of functions ω( f ), ω′( f ) and parameters ωds, ω′ds, ωas, ω′as satisfying:

ωds + ωas +
∫ 1

0
d f ω( f ) = ω′ds + ω′as +

∫ 1

0
d f ω′( f ) = 1 (21)

and resulting in this formula for the scaling of the weights:

Ω(n)
i =

ωdsδi,1 + ωasδi,n−1 + ω
(

i
n

)
ωds + ωas + ∑n−1

j=1 ω
(

j
n

) −
ω′dsδi,1 + ω′asδi,n−1 + ω′

(
i
n

)
ω′ds + ω′as + ∑n−1

j=1 ω′
(

j
n

) (22)

As showed in the examples above and below, most of the tests in the literature have
this general scaling, with the only exceptions the ones contained in [8] that are not weight-
consistent in the above sense.

Example: Fu and Li’s F test

This test looks for an excess of very rare derived alleles as a possible signature of
negative selection [6]. The only nonzero weights are ωds = 1 and ω′( f ) = 1/ f log(N),
while ω( f ) = ω′ds = ωas = ω′as = 0. The resulting test is:

TF =
ξ1 − S/an√

Var(ξ1 − S/an)
(23)

Note that this test has both singleton weights and a divergent weight function.

Example: Error-corrected tests of Achaz [19]

This class of tests is an attempt to correct for sequencing errors and biases in the data by
removing the alleles where most of the problems manifest themselves, i.e., singletons (both
ancestral and derived). With a slight generalisation of the proposal in [19], the weights
of the singletons are chosen in such a way to cancel precisely the contributions of the
weight functions:

Ωds = −Ω
(

1
n

)
, Ωas = −Ω

(
1− 1

n

)
(24)

or:

ωds = −ω

(
1
n

)
, ωas = −ω

(
1− 1

n

)
, ω′ds = −ω′

(
1
n

)
, ω′as = −ω′

(
1− 1

n

)
(25)

therefore, the final weights of derived or ancestral singletons are zero. These corrections
can be applied in principle to any weight function.

2.2.4. Alternative Choices of Scaling

The choice of scaling discussed in the previous sections represents a quite simple and
effective way to fix the dependence on n of a newly devised test. However, other choices
are possible whose weights differ from the above ones for small n. The reason is that for
n not too large, both the variance of order f (1− f )/n ' i(n− i)/n3 in the estimation of
the frequency f = i/n and the related uncertainty about how the frequencies are actually
weighted in the test become important. This uncertainty originates from the (binomial)
sampling of individuals from the population and there is some degree of arbitrariness in
deciding how to account for it. Moreover, tests that take it into account could be inconsistent
in the above sense.
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A possible choice of scaling that uses the binomial sampling is the following: consid-
ering ω( f ), ω′( f ) as frequency distributions, the weights ωi, ω′i are assigned from ω( f ),
ω′( f ) through the same binomial sampling that is done for allele spectra, that is:

ωi =

∫ 1
0 d f (n

i ) f i(1− f )n−i ω( f )∫ 1
0 d f (1− f n − (1− f )n)ω( f )

(26)

ω′i =

∫ 1
0 d f (n

i ) f i(1− f )n−i ω′( f )∫ 1
0 d f (1− f n − (1− f )n)ω′( f )

(27)

A simple example of this scaling (but with an highly divergent weight function)
is given by the test for admixture [8] discussed previously. Optimal tests also follow
this scaling.

Example: Test for admixture of Achaz [8]

This test is apparently not consistent and it does not follow the scaling (8). However,
it follows another scaling related to the allele sampling. To understand this, consider the
weight functions ω( f ) = δ( f − 1/2), ω′( f ) = 1 where δ( f − 1/2) is a Dirac delta function
centred in 1/2. (The Dirac delta δ( f − a) is a function whose value is 0 if f 6= a and +∞
if f = a. The integral

∫
δ( f − a)g( f )d f is g(a) if a is inside the range of integration and

0 otherwise. Technically speaking it is not a mathematical function, but a distribution,
i.e., an element of a dual space of regular functions.) If we scale the weights according to
(26) and (27), that is:

ωi =

∫ 1
0 d f (n

i ) f i(1− f )n−i ω( f )∫ 1
0 d f (1− f n − (1− f )n)ω( f )

=
(n

i )2
−n

1− 2−n+1 (28)

ω′i =

∫ 1
0 d f (n

i ) f i(1− f )n−i ω′( f )∫ 1
0 d f (1− f n − (1− f )n)ω′( f )

=
1

n− 1
(29)

then the corresponding test is precisely the one proposed by Achaz. Note that the strong
dependence of the test from sample size does not come only from the choice of scaling, but
also from the weight function chosen, that is highly divergent.

2.3. Optimal Tests
2.3.1. On the Existence of Generic Tests

An interesting question on the way to build good linear tests is the following: do there
exist generic tests? A completely generic test for neutrality should be able to detect any
deviation from the spectrum of the null model that is sufficiently large. Unfortunately,
these tests do not exist. In fact, for every test defined by a set of weights Ωi it is possible
to find a spectrum ξi = α/ian + (1− α)∆i that is maximally different from the standard
spectrum at least in a range of frequencies and is nevertheless undetectable by the test
because its average value on this spectrum is zero. This is expressed in a more formal way
in the following theorem, which shows that even the complete lack of alleles in some range
of frequencies could not be always detected.

Theorem 1. For every set of n real weights Ωi with ∑i Ωi = 0, there is a set of n real numbers
∆i 6= const/i and a parameter α ∈ [0, 1] that satisfy the conditions:

∑
i

iΩi∆i = 0 , min
i∈[1,n−1]

(
α

1
ian

+ (1− α)∆i

)
= 0 (30)
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The above limitation is not a consequence of the small sample size. This can be seen
for example in the framework of the scaling theory discussed in this paper. In fact, for large
sample sizes, the weights can be approximated by a weight function Ω( f ). In this context
it is possible to prove the next theorem, that is a continuous equivalent of the previous one.

Theorem 2. For every piece-wise continuous weight function Ω( f ) ∈ L1
[1/N,1] such that∫ 1

1/N Ω( f )d f = 0, there is a smooth function ∆( f ) 6= const/ f and a parameter α ∈ [0, 1]
that satisfy the conditions:∫ 1

1/N
d f f Ω( f )∆( f ) = 0 , inf

f∈[0,1]

(
α

1
f log(N)

+ (1− α)∆( f )
)
= 0 (31)

Note that in principle this problem can be solved using multiple tests. In fact, multiple
tests should be able to detect any strong deviation from the null spectrum, provided that
the number of these tests is large enough, as can be seen from the following theorem.

Theorem 3. Given at least n− 2 linearly independent sets of n− 1 real weights Ωi with ∑i Ωi = 0,
it is not possible to find a set of real numbers ∆i 6= const/i such that ∑i iΩi∆i = 0.

This last theorem is only a formal result and the requirement of n− 2 independent tests
is too strong. In practice, a small (but good) set of tests can detect most of the reasonable
and interesting deviations for realistic spectra.

The above theorems can be extended to the folded spectrum. In this section and the
next ones, we will consider only tests based on the unfolded spectrum. The generalisation
of the discussion to the folded spectrum is usually straightforward after substituting ξi
(i = 1 . . . n− 1) with ηi (i = 1 . . . bn/2c).

2.3.2. Optimal Tests and Their Geometric Structure

From the theorems of the previous section, it is clear that a single test cannot detect
all the possible deviations occurring in complicated evolutionary scenarios. However, it
is still possible to optimise neutrality tests for a specific alternative evolutionary scenario.
A simple optimality condition has been proposed by some of the authors in [10] in order
to maximise the power of the test to detect a fixed alternative scenario. We use a different
notation E() and E() for the expected value with respect to the null scenario (neutral model)
E() and the alternative scenario E(). If the null spectrum is E(ξi) = θLξ0

i and the expected
spectrum of the alternative scenario is E(ξi) = θLξ̄i (note that it may include an average
of frequencies in a number of different related scenarios, e.g., averaging over some of
the parameters of the scenario), the condition for optimal tests is the maximisation of the
average result of the test under the alternative scenario:

E(TΩ) =
∑n−1

i=1 ΩiθLξ̄i/ξ0
i√

Var
(

∑n−1
j=1 Ωjξ j/ξ0

j

) (32)

This condition is based on the observation that the tests have mean zero and variance
1; therefore, if the distributions of the results of the tests are similar, the maximisation of the
average value of the test should correspond to the maximisation of the average power of
the test. It is also possible to maximise directly the power of the test, taking into account the
different distribution of the results under the null and the alternative model; this possibility
will be pursued in Section 3.1.

Interestingly, optimal tests show a geometric structure which becomes apparent after
defining the scalar product between spectra:〈

〈ξ ′, ξ ′′
〉
〉 ≡∑

i,j
ξ ′ic
−1
ij ξ ′′j (33)
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where c−1
ij is the inverse of the covariance matrix Cov(ξi, ξ j). Since Cov(ξi, ξ j) is symmetric

and positive, its inverse is also symmetric and positive, i.e., it is a positive bilinear form,
therefore, the above expression defines a scalar product. Then, the optimal test for an
alternative spectrum ξ̄ can be written in the elegant form:

TO =

〈
〈ξ, ξ̄

〉
〉 −

〈
〈ξ, ξ0〉〉〈〈ξ0, ξ̄

〉
〉/
〈
〈ξ0, ξ0〉〉√〈

〈ξ̄, ξ̄
〉
〉 −

〈
〈ξ0, ξ̄

〉
〉2/〈〈ξ0, ξ0〉〉

(34)

This expression can be easily obtained as a special case of the general formula (50) that we
will discuss later in the context of nonlinear tests. A direct proof of this result can be found
in [10] after substituting the scalar products with the definition (33).

The numerator of the test is actually the matrix element between ξ̄ and ξ of the
linear operator 1− Pξ0 , where Pξ0 is the projection operator along ξ0. In other words, it is
proportional to the difference between the length of the projection of ξ on ξ̄ and the length
of the projection on ξ̄ of the spectrum obtained by the projection of ξ on ξ0, as illustrated in
Figure 2.

Figure 2. Geometrical representation of the numerator of the optimal test TO in (34). The length of
the red line segment corresponds to the value of the numerator.

From this geometrical interpretation it is clear that if the spectrum ξ corresponds to
the null spectrum θLξ0, then the two projections are equal and the result of the test is zero.
On the other side, if the spectrum is the alternative spectrum θLξ̄, then the value of the
test is:

T(max)
O = θL

√〈
〈ξ̄, ξ̄

〉
〉 −

〈
〈ξ0, ξ̄

〉
〉2

〈〈ξ0, ξ0〉〉 (35)

which is the maximum value over all possible tests in the alternative scenario. The same
expression, but with a minus sign, corresponds to the minimum value.

The denominator of the test is the square root of the matrix element of the linear
operator 1− Pξ0 between ξ̄ and itself. Note that both the numerator and the denominator
of the test do not change by adding any (possibly negative) multiple of ξ0 to ξ̄, because ξ0

lies in the kernel of 1− Pξ0 . This means that optimal tests depend only on the expected
deviations from the null spectrum in the alternative scenario. The result of the test is
maximum when the deviations of the data from the null spectrum correspond exactly to
the expected ones, and it is minimum when they are opposite to the expected ones.
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2.4. Beyond Linear Neutrality Tests
2.4.1. Quadratic and Nonlinear Tests

Almost all the neutrality tests proposed in the literature are linear in the spectrum ξi.
As far as we know, there is only one exception, namely the Gξ test of Fu [11]. This test is a
quadratic polynomial reminiscent of Hotelling’s t2 statistics for the different components of
the spectra:

G =
n−1

∑
i,j=1

c−1
ij (ξi − θLξ0

i )(ξ j − θLξ0
j ) (36)

where c−1
ij is the inverse of the covariance matrix Cov(ξi, ξ j). Actually, the test proposed by

Fu is an approximation to this test with a different normalisation, namely:

Gξ =
1

n− 1

n−1

∑
i=1

(ξi − θLξ0
i )

2

Var(ξi)
(37)

In this approximation, the off diagonal terms in the covariance can be neglected [9,11].
For large samples, the distribution of the results of the test G tends to a χ2 distribution with
n− 1 degrees of freedom.

Fu’s approach cannot be extended to general quadratic or higher order tests, because
the distribution of the results of the test would be generally unknown and not positive
definite. For this reason we propose to rescale the tests to have zero mean and variance 1.
With this normalisation, we expect that the distribution would asymptotically converge
to a Gaussian N(0, 1) for all tests. As an example, the (re)normalised version of Fu’s test
would be:

TG =
∑n−1

i,j=1 c−1
ij (ξi − θLξ0

i )(ξ j − θLξ0
j )− (n− 1)√

Var
(

∑n−1
i,j=1 c−1

ij (ξi − θLξ0
i )(ξ j − θLξ0

j )− (n− 1)
) (38)

Since the only difference between this test and the original one is the normalisation
and a shift by a constant factor n− 1, the power of the test is the same.

Now we present a systematic discussion of nonlinear tests that are generic polynomials
(or eventually power series) in the spectrum ξi. All the tests are rescaled to be centred (i.e.,
to have zero mean) and have variance 1. We denote by µijk... the moments of the spectrum
under the null model, that is, µijk... = E(ξiξ jξk . . .). With this definition, µi = θLξ0

i . Note
that all these moments depend on θ. In the approximation of unlinked (independent) sites
and small θ, the second moments are equal to µij = θLξ0

i δij + θ2L2ξ0
i ξ0

j .
The weights of general nonlinear tests can depend explicitly on θ, as seen in the

previous example. To compute the values of the tests, the (unknown) parameter θ is
substituted with an estimator θ̂. Unlike the linear case, in this case there are two different
classes of tests, related to the dependence on θ̂ of the centredness: strongly centred and
weakly centred tests.

Strongly centred tests are tests that are always centred for any value of θ̂, even if it is
different from the actual value of θ. The general form for strongly centred tests is:

TΩ =
∑n−1

i=1 Ω(1)
i ξi + ∑n−1

i,j=1 Ω(2)
ij ξiξ j + ∑n−1

i,j,k=1 Ω(3)
ijk ξiξ jξk + · · ·√

Var
(

∑n−1
i=1 Ω(1)

i ξi + ∑n−1
i,j=1 Ω(2)

ij ξiξ j + ∑n−1
i,j,k=1 Ω(3)

ijk ξiξ jξk + · · ·
) (39)

with the real symmetric weights Ω(n)
ijk... satisfying the set of conditions:

0 =
n−1

∑
i=1

Ω(1)
i µ

(m)
i +

n−1

∑
i,j=1

Ω(2)
ij µ

(m)
ij + . . . , m = 1, 2, 3 . . . (40)



Genes 2023, 14, 1714 14 of 32

where we denote by µ
(p)
ijk... the p-th term of the Taylor expansion with respect to θL of µijk...

(in other words, µijk... = ∑p θpLpµ
(p)
ijk..., where the coefficients µ

(p)
ijk... are independent on θ).

The sum can be limited to polynomials of some finite order in ξi or it can be a (convergent)
power series. If we introduce the notation I = ijk . . . to denote a group of nI indices, we
can rewrite the test in the simpler form:

TΩ =
∑I Ω(nI)

I (ξ . . . ξ)I√
Var
(

∑I Ω(nI)
I (ξ . . . ξ)I

) (41)

with the conditions:
0 = ∑

I
Ω(nI)

I µ
(m)
I , m = 1, 2, 3 . . . (42)

If we constrain these tests to be first order polynomials in ξi, we recover the linear case
with Ω(1)

i = Ωi/ξ0
i . Note that linear tests are always strongly centred. In fact, in the infinite

site model the spectrum is always proportional to θ, which consequently factorises out by
linearity and therefore has no effect on the centredness.

Weakly centred tests are tests that are centred but not strongly centred, i.e., they are
centred if and only if θ̂ = θ. The general form for weakly centred tests is:

TΓ =
γ + ∑n−1

i=1 Γ(1)
i ξi + ∑n−1

i,j=1 Γ(2)
ij ξiξ j + ∑n−1

i,j,k=1 Γ(3)
ijk ξiξ jξk + · · ·√

Var
(

γ + ∑n−1
i=1 Γ(1)

i ξi + ∑n−1
i,j=1 Γ(2)

ij ξiξ j + ∑n−1
i,j,k=1 Γ(3)

ijk ξiξ jξk + · · ·
) (43)

with the condition:

0 = γ +
n−1

∑
i=1

Γ(1)
i µi +

n−1

∑
i,j=1

Γ(2)
ij µij +

n−1

∑
i,j,k=1

Γ(3)
ijk µijk + . . . (44)

where the Γijk... are real symmetric weights, possibly dependent on θ. We can simplify these
expressions using the same notation as above, obtaining the simpler form:

TΓ =
γ + ∑I Γ(nI)

I (ξ . . . ξ)I√
Var
(

γ + ∑I Γ(nI)
I (ξ . . . ξ)I

) (45)

with the condition:
0 = γ + ∑

I
Γ(nI)

I µI (46)

Additionally, for this class of tests the sum can be limited to polynomials of fixed order
or extended to power series. Note that the rescaled version of the G test by Fu presented
above belongs to this class.

The important difference between strongly and weakly centred tests is related to the
robustness with respect to a biased estimation of θ. Since the class of weakly centred tests
is much larger than the class of strongly centred ones, it should be easier to find powerful
tests in the former class than in the latter. However, even if weakly centred tests could be
more powerful, they would not be centred in scenarios where the value of θ could not be
estimated precisely. On the other side, strongly centred tests are robust with respect to a
bad estimation of θ and therefore they would be preferable in scenarios where an unbiased
estimation of θ is troublesome.



Genes 2023, 14, 1714 15 of 32

The scaling rule (8) can be generalised to nonlinear tests in terms of functions
Ω(nI)( f1, f2 . . . fnI) for strongly centred and Γ(nI)( f1, f2 . . . fnI) for weakly centred tests:

Ω(nI)
I ' 1

nnI
Ω(nI)

(
i
n

,
j
n

,
k
n

. . .
)

(47)

Γ(nI)
I ' 1

nnI
Γ(nI)

(
i
n

,
j
n

,
k
n

. . .
)

(48)

Fixing the precise scaling is more ambiguous than in the linear case because there are
many different ways to preserve centredness. For this reason, the choice of scaling would
be different for strongly and weakly centred tests and will not be discussed here.

All the possible nonlinear neutrality tests based on the frequency spectrum fall into one
of the two classes presented in this section and have the form (41) and (42), or (45) and (46).
Since both these classes contain an infinite number of possible choices of weights, the
only reasonable criterion to study general nonlinear tests is to select the most powerful
or interesting ones. Apart from the Hotelling choice of Fu [11], the most interesting
choice is apparently the subclass of nonlinear optimal tests, which will be discussed in the
next sections.

2.4.2. Strongly Centred Optimal Tests

As discussed for the linear case, optimal tests depend on the expected alternative
scenario. In the nonlinear case, in principle it would be possible to find generic optimal tests,
but there is no clear framework to obtain them. For this reason we limit our study to the
case of optimal tests for a specific alternative scenario. We denote by µ̄ijk... = E(ξiξ jξk . . .)
the moments of the alternative spectrum for this scenario.

Since we use the same normalisation for linear and nonlinear tests, the optimality
condition corresponds to the maximisation of the expected value of the test under the
alternative scenario:

E(TΩ) =
∑I Ω(nI)

I µ̄I√
Var
(

∑I Ω(nI)
I (ξ . . . ξ)I

) (49)

and can be justified as in the linear case.
We denote by Ĩ the ordered sequence of the indices contained in I = ijk . . . and by σ(I)

the number of distinct permutations of the sequence I, i.e., the total number of permutations
divided by the number of permutations that leave I invariant. The main result for the
optimal weights is presented in this theorem.

Theorem 4. The maxima of E(TΩ) correspond to the weights:

Ω(nI)
I =

1
σ(I)

∑̃
L

C−1
ĨL̃

µ̄L̃ −∑
k

∑
l

∑̃
L

C−1
ĨL̃

µ
(k)
L̃
Mkl ∑̃

J,K̃

µ
(l)
J̃

C−1
J̃K̃

µ̄K̃

 (50)

where the matrices C−1
ĨJ̃

andMkl satisfy the identities:

∑̃
K

C−1
ĨK̃

(
µK̃J̃ − µK̃µJ̃

)
= δĨJ̃ (51)

∑
r
Mkr ∑̃

I,L̃

µ
(r)
Ĩ

C−1
ĨL̃

µ
(l)
L̃

= δkl (52)
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Moreover, the variance of the corresponding unnormalised test under the null model is equal to
its expected value under the alternative model:

Var

(
∑

I
Ω(nI)

I (ξ . . . ξ)I

)
= ∑

I
Ω(nI)

I µ̄I (53)

Note that in general all the weights of the above optimal solution (50) are nonzero,
therefore the maximum average value of the test for optimal tests built on polynomials
of degree d increases with the degree d. This suggests that optimal tests of higher degree
should be more powerful than linear optimal tests.

We provide explicit formulae for the above weights for the optimal quadratic test
in the independent sites approximation. Given E(ξi) = µi and E(ξi) = µ̄i, the relevant
weights Ω(nI)

I are:

Ω(1)
i = (Σµ + 2− Σµ̄)

(
µ̄i
µi
−

Σµ̄

Σµ

)
− 1

2

(
µ̄2

i
µ2

i
−

Σ2
µ̄

Σ2
µ

)
(54)

Ω(2)
ii = −

(
µ̄i
µi
−

Σµ̄

Σµ

)
+

1
2

(
µ̄2

i
µ2

i
−

Σ2
µ̄

Σ2
µ

)
(55)

Ω(2)
ij =

1
2

[(
µ̄iµ̄j

µiµj
−

Σ2
µ̄

Σ2
µ

)
−
(

µ̄i
µi
−

Σµ̄

Σµ

)
−
(

µ̄j

µj
−

Σµ̄

Σµ

)]
(56)

where Σµ = ∑n−1
i=1 µi and Σµ̄ = ∑n−1

i=1 µ̄i. All these formulae are also valid for the folded
spectrum if the appropriate µi and µ̄i are used. These results are discussed in Appendix A.7.

For optimal tests of higher degree, explicit expressions become cumbersome and the
numerical implementation of the test (50) and the matrices (51) and (52) is more convenient.

2.4.3. Weakly Centred Optimal Tests

In this case the optimality condition corresponds to the maximisation of the expression:

E(TΓ) =
γ + ∑I Γ(nI)

I µ̄I√
Var
(

γ + ∑I Γ(nI)
I (ξ . . . ξ)I

) (57)

with the same condition:
0 = γ + ∑

I
Γ(nI)

I µI (58)

The simplest case corresponds to a first order polynomial:

TΓ =
γ + ∑n−1

i=1 Γ(1)
i ξi√

γ2 + 2γ ∑n−1
j=1 Γ(1)

j µj + ∑n−1
j=1 ∑n−1

k=1 Γ(1)
j Γ(1)

k µjk

(59)

whose maximum corresponds to the optimal weights:

Γ(1)
i =

n−1

∑
j=1

c−1
ij
(
µ̄j − µj

)
, γ = −

n−1

∑
j=1

n−1

∑
k=1

µjc−1
jk (µ̄k − µk) (60)
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where c−1
ij is the inverse matrix of the covariance matrix cij = µij − µiµj. Since γ 6= 0 for

this optimal test, the value of this test for the specific scenario for which it is built is larger
than the value of the corresponding linear optimal test. In fact the maximum of the test is:

E(TΓ) =

√√√√n−1

∑
j=1

n−1

∑
k=1

(
µ̄j − µj

)
c−1

jk (µ̄k − µk) (61)

that should be compared to the maximum of the optimal test for the linear case, which can
be rewritten as:

E(TΩ)linear =

√√√√√n−1

∑
j=1

n−1

∑
k=1

(
µ̄j − µj

)
c−1

jk (µ̄k − µk)−

(
∑n−1

j=1 ∑n−1
k=1 µjc−1

jk (µ̄k − µk)
)2

∑n−1
j=1 ∑n−1

k=1 µjc−1
jk µk

(62)

The comparison shows clearly that nonlinear optimal tests are always more powerful
than linear optimal tests for the same scenario.

The form of the results for the general case is similar to this simple case.

Theorem 5. The maxima of E(TΓ) correspond to the weights:

Γ(nI)
I =

1
σ(I) ∑̃

J

C−1
ĨJ̃

(
µ̄J̃ − µJ̃

)
, γ = − ∑̃

J

µJ̃ ∑̃
K

C−1
J̃K̃ (µ̄K̃ − µK̃) (63)

where C−1
ĨJ̃

satisfied the identity:

∑̃
K

C−1
ĨK̃

(
µK̃J̃ − µK̃µJ̃

)
= δĨJ̃ (64)

Moreover, the variance of the corresponding unnormalised test under the null model is equal to
its expected value under the alternative model:

Var

(
γ + ∑

I
Γ(nI)

I (ξ . . . ξ)I

)
= ∑

I
Γ(nI)

I µ̄I + γ (65)

Also in this case, the power of optimal tests based on polynomials of higher degree
increases with the degree of the polynomial.

It is possible to give explicit expressions of the above matrix and moments for the
optimal quadratic test. The formulae for the weights Γ(nI)

I for the unfolded spectrum are:

Γ(1)
i = (Σµ + 2− Σµ̄)

(
µ̄i
µi
− 1
)
− 1

2

(
µ̄2

i
µ2

i
− 1

)
(66)

Γ(2)
ii =

1
2

(
µ̄i
µi
− 1
)2

(67)

Γ(2)
ij =

1
2

(
µ̄i
µi
− 1
)(

µ̄j

µj
− 1

)
(68)

γ =
1
2
(Σµ − Σµ̄)(Σµ + 2− Σµ̄) (69)

These results are valid in the independent sites approximation. They are also valid for
the folded spectrum if the appropriate µi and µ̄i are used. An expression for the denomina-
tor of the test in the independent sites approximation can be found in Appendix A.7.
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2.5. Empirical Simulations and Code Used for Studying the Statistical Power of Neutrality Tests

We obtained the frequency spectrum of samples for different subdivision and expan-
sion models using one million iterations. Simulation parameters, as well as all the data
frequencies from the simulations are included in Zenodo (DOI: 10.5281/zenodo.8279694).
Linear and nonlinear tests were calculated using our own code, also available in the same
link. Additionally, linear and nonlinear optimal tests are also included in the program
mstatspop (https://github.com/cragenomica/mstatspop, accessed on 15 August 2023), to
facilitate the calculation of these tests by the users.

3. Results
3.1. General Optimisation of Linear Tests

The condition for optimal tests is the maximisation of E(TΩ) under the alternative
scenario. However, a better approach would by the maximisation of the power of the
test to reject the neutral model in the alternative scenario, given a choice of significance
level α. This approach requires the knowledge of the form of the probability distributions
p(TΩ = t|H0), p(TΩ = t|H1) where H0 and H1 are the null and alternative model, or
equivalently of all the moments of the spectrum E(ξiξ jξk . . .) and E(ξiξ jξk . . .).

Since this information is usually not available in analytic form and hard to obtain
computationally, we limit to the case where the distribution can be well approximated
by a Gaussian both for the null and for the expected model. Then, the only information
needed are the spectra µi = E(ξi), µ̄i = E(ξi) and their covariance matrices cij = E(ξiξ j)−
E(ξi)E(ξ j), c̄ij = E(ξiξ j)− E(ξi)E(ξ j).

We expect that both in this approximation and in the general case, the tests with
maximum power will depend on the significance level chosen, therefore limiting the
interest of these test and the possibilities of comparison between results of the test on
samples from different experiments.

We call τ = erf−1(1− 2α) the z-value corresponding to the critical p-value α. In the
Gaussian approximation, the power is given by the following expression:

Power =
1
2

1 + erf

∑j µ̄jΩj − τ
√

∑j,k cjkΩjΩk√
∑j,k c̄jkΩjΩk

 (70)

then its maximisation is equivalent to the maximisation of:

∑j µ̄jΩj − τ
√

∑j,k cjkΩjΩk√
∑j,k c̄jkΩjΩk

(71)

In the general case, the weights corresponding to the maximum depend explicitly on
τ and therefore on α. This dependence is expected but unwanted, since the interpretation
of the test depends explicitly on the critical p-value chosen.

There is only one case with weights independent on τ, that is the case of c̄ij (ap-
proximately) proportional to cij. In this case the maximisation of the power of the test is
(approximately) equivalent to the maximisation of the average result of the test, which is
precisely the condition for optimal tests in the sense of [10]. In fact, in this case, optimal tests
correspond precisely to an approximation of the likelihood-ratio tests under the assumption
of Gaussian likelihood functions, and are therefore approximately the most powerful tests
because of the Neyman–Pearson lemma.

As a side note, there is also a regime of values of α such that the weights corresponding
to maximum power are independent of α, that is, the regime τ(α) � 1. In this case the
power is an increasing function of ∑j,k c̄jkΩjΩk/∑l,m clmΩlΩm and the weights are simply
given by the null eigenvector (or linear combination of null eigenvectors) of the matrix
c̄ij − χcij, where χ is uniquely defined by the requirement that c̄ij − χcij be a negative

https://github.com/cragenomica/mstatspop
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semidefinite matrix with at least a null eigenvalue. However, this regime is uninteresting
because such small significance levels are practically useless (if τ ∼ 10, the corresponding
critical p-value is α ∼ 10−20). However, it could be possible to build interesting tests with
higher power by selecting linear combinations of the weights of the two α-independent
tests discussed above, that is, optimal tests and tests that maximise the alternative/null
variance ratio ∑j,k c̄jkΩjΩk/∑l,m clmΩlΩm.

3.1.1. Generalised Optimality Conditions

In a more general linear framework, the (normalised) test has the form T = ∑n−1
i=1 Ωiξi/ξ0

i .
We denote its moments under the standard neutral model (SNM) and the alternative
model by:

E0 = E(T)SNM = θL
n−1

∑
i=1

Ωi , V0 = Var(T)SNM =
n−1

∑
i,j=1

ΩiΩjcij/ξ0
i ξ0

j (72)

E = E(T)alt = θL
n−1

∑
i=1

Ωi ξ̄i/ξ0
i , V = Var(T)alt =

n−1

∑
i,j=1

ΩiΩj c̄ij/ξ0
i ξ0

j (73)

where E(ξi)SNM = θLξ0
i , E(ξi)alt = θLξ̄i, Cov(ξi, ξ j)SNM = cij and Cov(ξi, ξ j)alt = c̄ij. For

the standard neutral model ξ0
i = 1/i.

The optimality condition can be the maximisation of a general function M(E0,V0, E ,V)
of these quantities with respect to the weights Ωi. Since we are dealing with linear com-
bination of the frequency spectrum with mean E0 = 0 and variance V0 = 1, the function
effectively depends on E ,V only. Maximisation of power (in the Gaussian approximation),
given a significance level α, is equivalent to the maximisation of:

M(E ,V) = E −Φ−1(1− α)√
V

(74)

If there is some knowledge of the variance of the alternative spectrum, or at least of the
contribution for unlinked sites, maximisation of power is not the only possible optimisation.
In other words, it is possible to optimise with respect to other functions M(E ,V) of the
alternative mean E and variance V of the test, in order to obtain, e.g., more robust or
conservative tests.

For example:

• “Optimal tests”: if V is assumed to be completely unknown, the best we can do is
minimise the p-value of the expected alternative spectrum, that is, in the Gaussian
approximation p = 1−Φ((E − E0)/

√
V0) where Φ(z) is the cumulative distribution

function for the standard normal distribution. This is equivalent to the maximisation of:

M(E0,V0, E ,V) = E − E0√
V0

(75)

• Most powerful one-tail tests: in the Gaussian approximation, the power of the right
tail of test to reject the neutral Wright–Fisher model given a significance level α is
Power = 1− Φ((E0 + τ

√
V0 − E)/

√
V), where τ = Φ−1(1− α). Maximising this

power is equivalent to the maximisation of:

M(E0,V0, E ,V) = E − E0 − τ
√
V0√

V
(76)

If V ∝ V0, this is equivalent to the previous case and we retrieve the optimal tests
of [10] that are therefore the most powerful tests in this approximation.
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• Most powerful two-tails tests: in the Gaussian approximation, the power of both tails
of the test to reject the neutral Wright–Fisher model is:

M(E0,V0, E ,V) = 1−Φ
(
E0 + τ′

√
V0 − E√
V

)
+ Φ

(
E0 − τ′

√
V0 − E√
V

)
(77)

where τ′ = Φ−1(1− α/2) and α is the significance level. If E0 = 0, this maximisation is
equivalent to the maximisation of (E − E0 − τ′

√
V0)/

√
V similar to the previous case.

• Penalisations for high or low variance, depending on an extra parameter ν, such as:

M(E0,V0, E ,V) = E − E0

(
√
V0 +

√
V)ν

(78)

3.1.2. Tunable Optimal Tests

Interestingly, it turns out that the choice of an optimisation criterion—i.e., of a function
M(E ,V) to be maximised—can be performed simply by tuning a parameter λ in a simple
class of tests that we call “tunable optimal tests”.

The family of optimised tests with tunable parameter λ has the simple form:

T =
∑n−1

i=1 iΩi(λ)ξi√
Var(∑n−1

i=1 iΩi(λ)ξi)
(79)

with weights:

Ωi(λ) =
1
i

1− an

1 + λiξ̄i

(
n−1

∑
j=1

1
j(1 + λjξ̄ j)

)−1
 (80)

where an = ∑n−1
j=1 1/j.

The interest of this family of tests lies in the following property: for every possible
choice of the optimisation function M(E ,V), the test corresponding to the maximum value
of this function belongs to this family (see Appendix B).

Usual optimal tests [10] are obtained from the maximisation of M(E ,V) = E and

correspond to λ = 0+, that is, to the usual weights Ωi = ξ̄i − 1
i

∑n−1
j=1 ξ̄ j

an
.

More generally, λ can be obtained directly by evaluating E , V with the weights (80)
and then looking for the maximisation of M(E(λ),V(λ)). Note that there could be several
local maxima.

This class of tests is simple but far more flexible than usual optimal tests. However,
note that the exact choice of weights depends explicitly on θ and α. Furthermore, the
smoothness of the choice of weights with respect to the evolutionary parameters is not
assured. In principle, a slight change of evolutionary scenario could change the optimal
weights abruptly.

3.2. Simulations of the Power of Optimal Tests

Since a theoretical evaluation of the power of optimal tests of different degree is not
possible, we evaluate numerically the power of some of these tests in different scenarios.
We consider the best possible case, that is, we assume that the precise value of θ is known.
Moreover we assume unlinked sites and θ � 1. In this approximation, as shown in
Appendix A.7, the moments E(ξiξ jξk . . .) depend only on the first moments µi = θLξ0

i and
similarly E(ξiξ jξk . . .) depend only on µ̄i = θLξ̄i, therefore optimal tests depend only on
the alternative and null average spectra.

Note that for numerical simulations of optimal tests of higher degree, the numerical
implementation can be made easier if all the occurrences of inverse covariance matrices
C−1

ĨJ̃
in the the above formulae are replaced with the corresponding second moments µ−1

ĨJ̃
,
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both in the expressions (50), (63), and in the definition (52). The test is the same because of
the centredness condition, as it can be verified explicitly.

We compare four optimal tests. The first two are the linear and quadratic strongly
centred optimal tests, which are denoted by Tsc

O(1) and Tsc
O(2) respectively. The third test

is the weakly centred optimal test Twc
O(1) based on a first order polynomial and presented

in (59). The last optimal test Twc
O(2) is also weakly centred and based on on a quadratic

polynomial. The explicit formulae for the computation of the weights of Tsc
O(2) and Twc

O(2)
were given in Equations (54)–(56) and (66)–(69).

We simulated two demographic processes: (A) subdivision, where two populations
having identical size exchange individuals given a symmetric migration rate M, then
individuals are sampled from one population only; (B) expansion, where the population
size changes by a factor N0/N = 10 at a time T before present (in units of 4N generations).
For each value of the parameters M and T, 106 simulations were performed with mlcoalsim
v1.98b [20] for a region of 1000 bases with variability θ = 0.05 and recombination ρ = ∞
and a sample size of n = 20 (haploid) individuals. Confidence intervals at 95% level were
estimated from 106 simulations of the standard neutral coalescent with the same parameters.

In Figure 3 we compare the power of the tests in the best possible situation, namely
when θ is known with good precision. In this condition all optimal tests should give the
best results. In fact, the power of weakly centred tests (Twc

O(1) and Twc
O(2)) is impressive, being

around 100% for a large part of the parameter space and decreasing for large migration rates
(Figure 3A) and long times (Figure 3B) as every other test, because the frequency spectrum
for these cases becomes very similar to the standard spectrum. So, weakly centred tests
show a very good theoretical performance, counterbalanced by their lack of robustness. The
power of Twc

O(1) and Twc
O(2) are almost identical, therefore the contribution of the quadratic

part to Twc
O(2) is probably not relevant.

Figure 3. Statistical power of nonlinear optimal tests from coalescent simulations for the 5% tail,
compared with Tajima’s D test (for the left and the right tail). The parameters for the simulations
are: n = 20, θ = 0.05, L = 1000 bp, ρ = ∞; two populations considered but only one sampled
(for panel A); expansion factor N0/N = 10 (for panel B).

On the other hand, strongly centred optimal tests are more powerful than Tajima’s
D but less powerful than weakly centred tests, as expected. However, there is a sensible
difference in power between Tsc

O(1) and Tsc
O(2): in the range of parameters where the power of

weakly centred tests is around 100%, both strongly centred tests show a good performance
not so far from the weakly centred ones, while in the less favourable range the quadratic
test Tsc

O(2), while performing worse than the weakly centred tests, has a power that is 20%
higher than the linear test Tsc

O(1). Taking into account the robustness of the tests, these
simulations show that optimal tests like Tsc

O(2) could be an interesting alternative to the
usual linear tests.
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4. Discussion

In this paper we have presented a systematic analysis of neutrality tests based on
the site frequency spectrum. This study is intended to extend and complete the recent
works in [8,10] by extending the study of the linear neutrality tests presented by Achaz.
The properties of linear neutrality tests and optimal tests have been studied using this
framework. A new class of “tunable” optimal tests that include usual optimal tests as a
special case have been proposed, using a generalisation of the optimisation approach for
linear tests.

The aim of the paper is to give mathematical guidelines to build new and more
effective tests to detect deviations from neutrality. The proposed guidelines are the scaling
relation (8) and the optimality condition based on the maximisation of E(TΩ). Both these
guidelines are thoroughly explained and discussed.

One of the strengths of optimal neutrality tests (initially presented in [10]) is the fact
that their weights scale automatically with the aim to avoid a dependence with the sample
size, enabling interpretation of the results of the test in a sample-size-independent way.
For other tests, different scaling strategies were analysed and evaluated, discussing the
suitability of weighting methods and the scaling of existing neutrality tests.

The different neutral tests studied and developed in this paper have different features,
which make them suitable for different purposes. For example, a general neutrality test
where the weights are scaled to obtain interpretable results may be sufficient, with minimum
effort, to reject the null model and to interpret results, but the statistical power when faced
with a specific alternative hypothesis can be low. Instead, optimal tests become a better
approach if the alternative hypothesis is clearly formulated and the data is not clearly from
the null hypothesis. In respect to the differences between linear and nonlinear optimal
test, while nonlinear optimal tests have been shown to be more powerful than linear ones
(and weakly centred tests more powerful than strongly centred ones), power is not the only
important issue: robustness must also be taken into consideration.

In fact, there are three important remarks on the relative robustness of these tests. The
first one is that, as already discussed, centredness of weakly centred tests is not robust
with respect to a biased estimate of θ, therefore these tests should be preferred to strongly
centred tests only in situations where the value of θ is well known or a good estimate
is available.

The second remark is that neither the weights nor the results of linear optimal tests
do depend on the value of θ and on the number of segregating sites S, while the weights
of nonlinear optimal tests have an explicit dependence on θ and their results depend not
only on the spectrum but also on S; therefore, the interpretation of the results of these tests
is more complicated. However, this is not necessarily true for homogeneous tests of any
degree, like the quadratic Gξ test by Fu. An interesting development of this work could
be a study of homogeneous tests of a given degree k satisfying the optimality condition,
which can be easily obtained from Equation (50) by restricting all ordered sequences of
indices Ĩ, J̃, K̃, L̃ to contain precisely k indices (along with some “traceless” condition, in
case). These homogeneous optimal tests (or at least some subclass of them) should depend
weakly on S.

The third remark is that linear optimal tests have two interesting properties that are
not shared by other tests: they depend only on the deviations from the null spectrum and
they have an easy interpretation in terms of these deviations, that is, they are positive
if the observed deviations are similar to the expected ones and negative if the observed
deviations are opposite to the expected ones. These features give an important advantage
to linear optimal tests.

A fourth remark is that “tunable” optimal tests can be built to achieve weights that
correspond to maximum power to reject the null hypothesis for a given alternative scenario
but uncertain power calculations (e.g., when the variance of the alternative scenario is not
known). This new class of neutrality tests is highly flexible and only depends on a single
parameter and the mean alternative spectrum. Nevertheless, since the test can be used even
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when the alternative scenario is not fully defined, there may be situations where optimising
its power can result in the interpretability or robustness of the test being compromised.

Tests based on the frequency spectrum of polymorphic sites are fast, being based on
simple matrix multiplications, and can therefore be applied to genome-wide data. Moreover,
they can be used as summary statistics for Approximate Bayesian Computation or other
statistical approaches to the analysis of sequence data. While linear tests are often used in
this way, the nonlinear tests presented in this paper contain more information (related to
the covariances and higher moments of the frequency spectrum) that could increase the
power of these analyses.
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Appendix A. Technical Results

Appendix A.1. Transformations of Weights and Invariance of Tests

We report some theorems on the invariance of the tests under affine transformations.
These results can be easily proved and are implicitly used throughout this paper.

Theorem A1. A test of the form (3) does not change its value if all the weights Ωi are rescaled by a
common factor λ > 0, that is:

Ωi −→ λΩi ⇒ TΩ −→ sign(λ)TΩ (A1)

Note that the invariance of the tests mean that these transformations define equivalence
classes of weights, i.e., sets of different weights that actually correspond to the same test. In
particular, this theorem implies that the space of possible tests, in terms of the weights Ωi,
is not homeomorphic to Rn−2 (which would be the subspace of weights in Rn−1 that satisfy
the linear condition (4)) but to its quotient with respect to the invariance (multiplicative)
group R+, that is, the (n− 3)-dimensional sphere Sn−3 = Rn−2/R+.

Theorem A2. A test of the form (7) does not change its value under an affine transformation of
parameters (λ, ρi) on the weights ωi, ω′i with a common rescaling factor λ > 0, that is:

ωi −→ λωi + ρi , ω′i −→ λω′i + ρi ⇒ TΩ −→ sign(λ)TΩ (A2)

However, the estimators (5) are unbiased only if the rescaling factor satisfies the condition
λ = 1−∑n−1

i=1 ρi.

Appendix A.2. Generalised D′ Tests for Multilocus Analysis

The statistic D′ [21], which is defined as the ratio of Tajima’s D versus its minimum
value (given a fixed number of segregating sites), has been used in the literature for
multilocus analyses [21–23], arguing that the value of Tajima’s D is affected by the length,



Genes 2023, 14, 1714 24 of 32

the sample size, and the number of segregating sites of each studied locus and therefore
the values of each locus are not directly comparable.

The contribution of each locus to the heterogeneity is hardly known. Tajima’s D is
robust to differences in the level of variability (the variance is approximately equal to one)
and also quite robust against differences in sample size (as will be shown in the next part),
although the quantitative values of Tajima’s D for each condition are someway different
and therefore the comparison between values is not simple. The proposal of Schaeffer is to
use the test:

D′ =
D

min(D)S=Sobs

(A3)

as a (re)normalised version of Tajima’s D. Sobs is the observed number of segregating sites
in the sample. This proposal can be generalised for all the tests of the form (3) as follows:

T′Ω =
TΩ

min(TΩ)S=Sobs

=
∑n−1

i=1 iΩiξi

min(jΩj)Sobs
(A4)

This appears to be the natural generalisation of D′ to general linear tests. For the
optimal tests, there are other possibilities.

Appendix A.3. Tests Based on the Folded SFS

If an outgroup is not available, then the test should be based on the folded spectrum
and has the general form:

T∗Ω =
θ̂∗ω − θ̂∗ω′√

Var(θ̂∗ω − θ̂∗ω′)
=

∑
bn/2c
i=1 i(n− i)(1 + δn,2i)(ω

∗
i −ω∗′i )ηi√

Var
(

∑
bn/2c
j=1 j(n− j)(1 + δn,2j)(ω

∗
j −ω∗′j )ηj

) =

=
∑
bn/2c
i=1 i(n− i)(1 + δn,2i)Ω∗i ηi√

Var
(

∑
bn/2c
j=1 j(n− j)(1 + δn,2j)Ω∗j ηj

) (A5)

where the weights Ω∗i = ω∗i −ω∗′i satisfy the conditions:

bn/2c

∑
i=1

ω∗i = 1 ,
bn/2c

∑
i=1

ω∗′i = 1 ⇒
bn/2c

∑
i=1

Ω∗i = 0 (A6)

and:

θ̂∗ω =
1
L

bn/2c

∑
i=1

i(n− i)(1 + δn,2i)

n
ω∗i ηi , θ̂∗ω′ =

1
L

bn/2c

∑
i=1

i(n− i)(1 + δn,2i)

n
ω∗′i ηi (A7)

are unbiased estimators of θ.

Appendix A.4. Scaling of Weights in Tests without an Outgroup

The above arguments can be repeated in a straightforward way for the tests T∗Ω based
on the folded spectrum ηi. The only relevant difference is that the frequency f of the
minor allele in the population is always less than 50%, that is, f ∈ (0, 1/2]. For consistency
with the unfolded case, the weight ηn/2 is reduced by a factor 2. Moreover, the additional
parameters related to the weights of singletons cannot distinguish between ancestral and
derived alleles and therefore reduce to Ω∗s , ω∗s , ω∗′s . These parameters, together with the
functions Ω∗( f ), ω∗( f ), and ω∗′( f ), should satisfy the conditions:

Ω∗s +
∫ 1/2

0
d f Ω∗( f ) = 0 , ω∗s +

∫ 1/2

0
d f ω∗( f ) = ω∗′s +

∫ 1/2

0
d f ω∗′( f ) = 1 (A8)
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The formulae that determine the scaling of the weights are:

Ω∗(n)i =
1

1 + δn,2i
Ω∗
(

i
n

)
+ Ω∗s δi,1 −

1
bn/2c

(
Ω∗s +

bn/2c

∑
j=1

1
1 + δn,2j

Ω∗
(

j
n

))
(A9)

Ω∗(n)i =
ω∗s δi,1 + ω∗

(
i
n

)
/(1 + δn,2i)

ω∗s + ∑
bn/2c
j=1 ω∗

(
j
n

)
/(1 + δn,2j)

−
ω∗′s δi,1 + ω∗′

(
i
n

)
/(1 + δn,2i)

ω∗′s + ∑
bn/2c
j=1 ω∗′

(
j
n

)
/(1 + δn,2j)

(A10)

The weights of the folded versions of Tajima’s D and Fu and Li’s F∗ test follow this
scaling. The nonzero weight functions are ω∗( f ) = 1, ω∗′( f ) = 1/(log(N) f (1− f )) for
Tajima’s D and ω∗s = 1, ω∗′( f ) = 1/(log(N) f (1− f )) for the test of Fu and Li.

Appendix A.5. Scaling of Optimal Tests

Optimal tests have weights proportional to the expected allele distribution ωi = ξ̄i/ ∑n−1
j=1 ξ̄ j

and to the null allele distribution ω′i = ξ0
i / ∑n−1

j=1 ξ0
j . Therefore, the weights of an optimal

test follow the same scaling with sample size as the allele distributions. Denoting by ξ̄( f )
and ξ0( f ) the spectra of expected and null allele frequencies in the whole population, the
spectra for the sample are obtained by binomial sampling:

ξi =
∫ 1

1/Ne
d f Pbin(i; n, f )ξ( f ) Pbin(i; n, f ) =

(
n
i

)
f i(1− f )n−i (A11)

from the spectra ξ( f ) = ξ̄( f ) and ξ( f ) = ξ0( f ), respectively. Therefore the scaling of the
allele distributions is:

ξ̄i

∑n−1
j=1 ξ̄ j

=

∫ 1
1/Ne

d f (n
i ) f i(1− f )n−i ξ̄( f )∫ 1

1/Ne
d f (1− f n − (1− f )n) ξ̄( f )

(A12)

ξ0
i

∑n−1
j=1 ξ0

j

=

∫ 1
1/Ne

d f (n
i ) f i(1− f )n−i ξ0( f )∫ 1

1/Ne
d f (1− f n − (1− f )n) ξ0( f )

(A13)

which is precisely the scaling (26) and (27) with weight functions ω( f ) ∝ ξ̄( f ) and ω′( f ) ∝
ξ0( f ). This scaling does not correspond to the scaling (8) suggested in this paper, but
it takes into account the sampling process in a straightforward way, being based on the
expected and null allele distributions for the sample and therefore immediately related to
the binomial sampling of alleles from the population.

Note that these weights actually follow the scaling (8) for large n, with the same weight
functions ω( f ) ∝ ξ̄( f ) and ω′( f ) ∝ ξ0( f ). This agrees with the fact that when the sample
size is large enough, the variance of the sampling process can be safely ignored and all
reasonable choices of scaling are equivalent to our proposal (8).

Appendix A.6. Generalising D′ for Optimal Test

The D′ statistics of [21] can be generalised for optimal tests as it was done for general
linear tests. In particular, for a fixed number of segregating sites Sobs, the generalisation for
optimal tests in the approximation of unlinked sites and θ � 1 is:

T′O =
∑n−1

i=1 Ωiξi/ξ0
i

minj(Ωj/ξ0
j )Sobs

=
∑n−1

i=1 (ξi/Sobs)(ξ̄i/ ∑n−1
j=1 ξ̄ j)/(ξ0

i / ∑n−1
j=1 ξ0

j )− 1

mink

(
(ξ̄k/ ∑n−1

l=1 ξ̄l)/(ξ0
k / ∑n−1

l=1 ξ0
l )
)
− 1

(A14)

which has the interesting property of depending only on the allele frequency distributions.
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However, in the case of optimal tests there is another possibility, namely to define a D̄′

test as the ratio of the optimal test and of its average minimum, assuming that the spectrum
corresponds to the average spectrum of the actual scenario. This would correspond to
the form:

T̄′O = −
〈
〈ξ, ξ̄

〉
〉 −

〈
〈ξ, ξ0〉〉〈〈ξ0, ξ̄

〉
〉/
〈
〈ξ0, ξ0〉〉

Sobs/an

√(〈
〈ξ̄, ξ̄

〉
〉 −

〈
〈ξ0, ξ̄

〉
〉2/〈〈ξ0, ξ0〉〉

)
(〈〈ξ, ξ〉〉 − 〈〈ξ0, ξ〉〉2/〈〈ξ0, ξ0〉〉)

(A15)

which has the interesting property of being symmetric with respect to the actual spectrum
ξ and the expected spectrum ξ̄.

Appendix A.7. Moments of the Frequency Spectrum in the Independent Sites Approximation

We consider the limit θ � 1, L→ ∞ with constant θL. The spectrum ξi can be written
as a sum of spectra for all sites:

ξi =
L

∑
s=1

ξi(s) (A16)

where each variable ξi(s) has a Bernoulli distribution ξi(s) ∈ {0, 1} with probabilities
p(1) = θξ0

i and p(0) = 1− θξ0
i where ξ0

i = 1/i under the standard neutral model. The
expectation value of ξi is therefore:

E(ξi) = µi =
L

∑
s=1

E(ξi(s)) = θLξ0
i =

θL
i

(A17)

and similarly E(ξi) = µ̄i = θLξ̄i for a general model with average spectrum ξ̄i.
In the independent sites approximation, which is equivalent to the infinite recombi-

nation limit, the variables ξi(s) and ξi(s′) are i.i.d. random variables for s 6= s′, and more
generally the random variables ξi(s) and ξ j(s′) are independent for s 6= s′. The moments
for a single site s can be calculated as:

E(ξi(s)ξ j(s)ξk(s) . . .) = ∑
a,b,c...∈{0,1}

abc . . . P(ξi(s) = a, ξ j(s) = b, ξk(s) = c, . . .) =

= P(ξi(s) = 1, ξ j(s) =1, ξk(s) = 1, . . .) = P(ξi(s) = 1)δijδjk . . . (A18)

because the sum ∑n−1
i=1 ξi(s) ∈ {0, 1}, that is, different allele frequencies for the same site

are mutually exclusive. Therefore all these moments are always linear in θ and are nonzero
only when all indices are equal:

E(ξi(s)ξ j(s)ξk(s) . . .) = θξ0
i δijδjk . . . =

θ

i
δijδjk . . . . (A19)

Then the second moment can be evaluated as:

E(ξiξ j) =∑
s,s′

E(ξi(s)ξ j(s′)) = ∑
s

E(ξi(s)ξ j(s)) + ∑
s 6=s′

E(ξi(s))E(ξ j(s′)) =

=Lδij
θ

i
+ L(L− 1)

θ2

ij
= δijµi + µiµj −

µiµj

L
(A20)

and neglecting subleading orders in θ or L−1 like the last term above, we can calculate the
third and forth moments that are needed for the calculation of C−1.
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The final result for the moments of the spectrum ξi is:

E(ξiξ j) = µij =δijµi + µiµj (A21)

E(ξiξ jξk) = µijk =δijδjkµi + (δikµiµj + δjkµiµj + δijµiµk) + µiµjµk (A22)

E(ξiξ jξkξl) = µijkl =δijδjkδklµi + (δikδjlµiµj + δilδjkµiµj + δijδklµiµk)+

+(δijδjkµiµl + δijδjlµiµk + δikδklµiµj + δjkδklµiµj)+

+(δilµiµjµk + δjlµiµjµk + δikµiµjµl + δjkµiµjµl+

+δijµiµkµl + δklµiµjµk) + µiµjµkµl (A23)

All the results above can be applied to a general model simply by substituting µi with µ̄i.
Moreover, they can be applied to the folded spectrum by taking µi = θLn/i(n− i)(1 + δn,2i)
for the standard neutral model or µ̄i = θL(ξ̄i + ξ̄n−i)/(1 + δn,2i) for general models.

We define some quantities in order to simplify the expressions for the weights:

Σµ =
n−1

∑
i=1

µi , Σµ̄ =
n−1

∑
i=1

µ̄i , Σq =
n−1

∑
i=1

µ̄2
i

µi
(A24)

If the spectrum is folded, all the sums in the above expressions run from 1 to bn/2c.
The covariance matrix CĨ,J̃ is:

Ci,j = µij − µiµj = δijµi (A25)

Cij,k = µijk − µijµk = δijδjkµi + (δikµiµj + δjkµiµj) (A26)

Cij,kl = µijkl − µijµkl = δijδjkδklµi + (δikδjlµiµj + δilδjkµiµj)+

+ (δijδjkµiµl + δijδjlµiµk + δikδklµiµj + δjkδklµiµj)+

+ (δilµiµjµk + δjlµiµjµk + δikµiµjµl + δjkµiµjµl) (A27)

with the elements Cij,k and Cij,kl that should be considered only for i ≤ j, k ≤ l. It can be
verified that the inverse matrix C−1

Ĩ,J̃
has the form:

C−1
i,j =1 + δij

2µi
(
Σµ + 3

)
+ 1

2µ2
i

(A28)

C−1
ij,k =δijδjk

2µi − 1
2µ2

i
− (δik + δjk)

1
µk

(A29)

C−1
ij,kl =(δikδjl + δilδjk)

1
µiµj

− 3
2

δijδikδjl
1

µ2
i

(A30)

The formulae for the weakly centred quadratic test (66)–(69) can be obtained from
these formulae and the definition (63). The corresponding variance in the denominator
(45) is:

Var

(
∑

I
Γ(nI)

I (ξ . . . ξ)I

)
= 2(Σµ̄ − Σq/2)2 + Σµ(Σµ/2 + 1− 2Σµ̄ + Σq)

+Σq − 2Σµ̄ (A31)
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The matrix M is the inverse of the matrix M−1
rl = ∑Ĩ,L̃ µ

(r)
Ĩ

C−1
ĨL̃

µ
(l)
L̃

, which can be
easily calculated from the above equations as:

M−1
11 = 2Σ2

µ + Σµ (A32)

M−1
12 = −Σ2

µ (A33)

M−1
22 = Σ2

µ/2 (A34)

and the matrixM is

M =

(
1/Σµ 2/Σµ

2/Σµ 4/Σµ + 2/Σ2
µ

)
(A35)

The formulae (54)–(56) can be obtained from the formula (A35) and from the follow-
ing results:

∑̃
I

C−1
i,Ĩ

µ̄Ĩ = Σµ̄ + (Σµ + 2− Σµ̄)
µ̄i
µi
− 1

2

(
µ̄i
µi

)2
(A36)

∑̃
I

C−1
ii,Ĩ

µ̄Ĩ = −
µ̄i
µi

+
1
2

(
µ̄i
µi

)2
(A37)

∑̃
I

C−1
ij,Ĩ

µ̄Ĩ = −
µ̄i
µi
−

µ̄j

µj
+

µ̄iµ̄j

µiµj
(A38)

∑̃
I,J̃

µ
(1)
Ĩ

C−1
ĨJ̃

µ̄J̃ = Σµ̄(2Σµ − Σµ̄ + 1) ∑̃
I,J̃

µ
(2)
Ĩ

C−1
ĨJ̃

µ̄J̃ = Σ2
µ̄/2− ΣµΣµ̄ (A39)

∑̃
I

C−1
i,Ĩ

µ
(1)
Ĩ

= 2Σµ + 2 ∑̃
I

C−1
i,Ĩ

µ
(2)
Ĩ

= −Σµ − 1/2 (A40)

∑̃
I

C−1
ii,Ĩ

µ
(1)
Ĩ

= −1 ∑̃
I

C−1
ii,Ĩ

µ
(2)
Ĩ

= 1/2 (A41)

∑̃
I

C−1
ij,Ĩ

µ
(1)
Ĩ

= −2 ∑̃
I

C−1
ij,Ĩ

µ
(2)
Ĩ

= 1 (A42)

Appendix B. Proofs

Derivation of General Optimisation for Tunable Linear Tests

We consider the maximisation of M(E ,V) with the conditions E0 = 0, V0 = 1. We
assume that the function M(E ,V) is monotonic in both variables.

The existence of an absolute maximum (and minimum) is ensured by Weierstrass
theorem applied to the closed manifold determined by the conditions E0 = 0, V0 = 1 [10].

Local maxima can be found by the Lagrange multipliers method, i.e., by the extremum
conditions for M(E ,V)− λ1E0 − λ2(V0 − 1) with respect to Ωi, λ1 and λ2. We obtain the
extremum equation:

Ωi = −
θL
2

∂M(E ,V)/∂E
∂M(E ,V)/∂V · ξ

0
i

n−1

∑
j=1

(
c̄ + λ̃2c

)−1
ij

(
ξ̄ j − λ̃1ξ0

j

)
(A43)

with λ̃1, λ̃2 determined by the constraint equations. Solving for λ̃1, we obtain:

Ωi = −
θL
2

∂M(E ,V)/∂E
∂M(E ,V)/∂V · ξ

0
i

n−1

∑
j=1

(
c̄ + λ̃2c

)−1
ij

[
ξ̄ j − ξ0

j
∑n−1

l,m=1 ξ0
l (c̄ + λ̃2c)−1

lm ξ̄m

∑n−1
l,m=1 ξ0

l (c̄ + λ̃2c)−1
lm ξ0

m

]
(A44)

with λ̃2 determined by the condition ∑n−1
i,j=1 ΩiΩjcij/ξ0

i ξ0
j = 1.
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We approximate the variances with their values for unlinked sites:

cij ' δijθLξ0
i , c̄ij ' δijθLξ̄i (A45)

and we obtain the weights:

Ωi = ξ0
i

1−
∑n−1

j=1 ξ0
j

(λξ̄i/ξ0
i + 1)∑n−1

j=1
ξ0

j

λξ̄ j/ξ0
j +1

 (A46)

where the remaining parameter λ is fixed by the condition:

θ3L3

4

n−1

∑
i=1

Ω2
i /ξ0

i =

(
∂M(E ,V)/∂V
∂M(E ,V)/∂E

)2

(A47)

This equation fixes all values of λ corresponding to the local maxima. To obtain the
absolute maximum, one has to choose the solution λ that actually maximises M(E ,V).

In practice, for the standard neutral model, it is sufficient to use the usual form of
the test:

T =
∑n−1

i=1 iΩiξi√
Var(∑n−1

i=1 iΩiξi)
(A48)

with the (unnormalised) weights:

Ωi =
1
i

1− an

(λiξ̄i + 1)∑n−1
j=1

1
j(λjξ̄ j+1)

 (A49)

with λ determined numerically either by the condition:

θ3L3

4

n−1

∑
i=1

iΩ2
i =

(
∂M(E ,V)/∂V
∂M(E ,V)/∂E

)2

(A50)

or more easily, looking directly for the value of λ that maximises numerically M(E ,V).
We discuss explicitly two important limit cases:

• ∂M/∂V = 0: this case reduces to the usual optimal tests. It corresponds to the limit
λ→ 0+ in the above equation, which gives a unique solution:

Ωi = λ

(
ξ̄i −

1
i

∑n−1
j=1 ξ̄ j

an

)
(A51)

where the λ factor is irrelevant.
• ∂M/∂E = 0: maximisation or minimisation of variance. In this case the values

of λ are determined by the condition ∑n−1
j=1

1
j(λjξ̄ j+1) = 0, which is equivalent to

an = ∑n−1
j=1

1
j+1/λξ̄ j

. The r.h.s. is monotonically increasing and diverges for the n− 1

values λ = −1/iξ̄i, i = 1 . . . n− 1. Monotonicity and the Weierstrass theorem ensure
that there are precisely n− 2 solutions for this equation. If we order the values of
iξ̄i from the lowest i1ξ̄i1 to the highest in−1ξ̄in−1 , the value of λ that maximises V is
the only solution that lies in the interval −1/i1ξ̄i1 < λ < −1/i2ξ̄i2 and the value that
minimises V is the only solution in −1/in−2ξ̄in−2 < λ < −1/in−1ξ̄in−1 .
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Proof of Theorem 1. Choose a vector ∆i in Rn−1 that is orthogonal both to iΩi and to i,
that is, such that ∑i i∆iΩi = 0 and ∑i iΩi = 0. Since α/ian + (1− α)∆i is a set of continuous
functions of α, its minimum is also continuous in α. Moreover, the minimum is clearly
positive if α = 1, while it is negative by construction if α = 0. The theorem follows from
the intermediate value theorem.

Proof of Theorem 2. The proof is similar to the previous one. Choose a function ∆( f )
in C∞(0, 1) to satisfy both

∫ 1
1/N d f f Ω( f )∆( f ) = 0 and

∫ 1
1/N d f f ∆( f ) = 0. (Since these

conditions correspond just to two independent functionals of ∆( f ) and C∞(0, 1) is an
infinite-dimensional linear space, the existence of such a function is guaranteed). Since
α/ f log(N) + (1− α)∆( f ) is a continuous functions of α and its infimum is not ±∞, its
infimum is also continuous in α. Moreover, the infimum is clearly positive if α = 1,
while it is negative by construction if α = 0. The theorem follows from the intermediate
value theorem.

Proof of Theorem 3. The vectors Ωi are a basis of the subspace Rn−2 ⊂ Rn−1 defined
by the condition ∑i Ωi = 0, that is, the space of vectors orthogonal to the vector whose
components are vi = 1. Therefore the only vectors i∆i that are orthogonal to all the vectors
in this basis are precisely of the form i∆i ∝ vi, that is, ∆i = const/i.

The theorems on the form of optimal tests can be easily proved from a general lemma.

Lemma A1. Consider a function f : RM r {0} → R of the form:

f (~v) =
~v · ~w√
~v ·Q~v

(A52)

where ~w ∈ RM and Q is a M×M symmetric positive matrix, and a K×M matrix R with K < M
and maximum rank. The extrema of the function f restricted to the subspace R~v = 0 are given by:

~vα = α

(
Q−1~w−Q−1Rt

(
RQ−1Rt

)−1
RQ−1~w

)
(A53)

The extrema with α > 0 are maxima and the extrema with α < 0 are minima of the function f .
These extrema satisfy the identity:

~vα ·Q~vα = α~vα · ~w (A54)

Proof. The existence of maxima and minima can be proved by the Weierstrass extreme
value theorem. In fact f is continuous and invariant under a homothety with centre in
the origin of RM and positive scale factor, therefore the codomain of the function on the
linear subspace defined by R~v = 0 is the same as the codomain of its restriction to the
submanifold of unit vectors |~v| = 1, which is a compact space. The restriction of f is also
continuous and the conclusion follows. To determine the extrema, the method of Lagrange
multipliers states that it is sufficient to extremise the function:

F(~v,~λ) =
~v · ~w√
~v ·Q~v

+~λ · R~v (A55)

and since there are no boundaries, this is equivalent to the solution of the equations:

0 = ~∇v f =
~w√

~v ·Q~v
− ~v · ~w

(~v ·Q~v)3/2 Q~v + Rt~λ (A56)

0 = ~∇λ f =R~v (A57)



Genes 2023, 14, 1714 31 of 32

The solution satisfies:

~v · ~w
~v ·Q~v~v = Q−1~w + Q−1Rt~λ (A58)

and multiplying it by R and using (A57) we obtain:

~λ = −
(

RQ−1Rt
)−1

RQ−1~w +~l , Rt~l = 0 (A59)

that can be inserted again in Equation (A58) to eliminate ~λ. The resulting equation in ~v
admits only solutions of the form (A53) and by substituting (A53) into it, it can be checked
that all values of α 6= 0 correspond to solutions of (A56) and (A57). The invariance of f
under a central homothety with positive scale factor implies that the value of the function
does not depend on |α|. The function is positive for α > 0 and negative for α < 0, therefore
solutions with α > 0 correspond to maxima and solutions with α < 0 correspond to minima.
The identity (A54) can be proved by substituting the solution (A53).

Proof of Theorem 4. The expected values of the tests (41) have the same functional form
as the function f of Lemma A1. The correspondence is the following:

~v → vĨ = σ(Ĩ)Ω(nĨ)

Ĩ
(A60)

~w → wĨ = µ̄Ĩ (A61)

Q → QĨJ̃ = µĨJ̃ − µĨµJ̃ (A62)

R → Rk,Ĩ = µ
(k)
Ĩ

(A63)

and the positivity of the matrix Q is guaranteed by the positivity of the variance for
all possible choices of the weights. Application of Lemma A1 with a α = 1 gives the
result (50).

Proof of Theorem 5. We can immediately solve Equation (58) for γ and substitute it in
Equation (57). Then γ is a function of the other weights and the maximisation is uncon-
strained. It can be seen that also in this case, the expected values of the tests have the same
functional form as the function f of Lemma A1. The correspondence is the following:

~v → vĨ = σ(Ĩ)Γ(nĨ)

Ĩ
(A64)

~w → wĨ = µ̄Ĩ − µĨ (A65)

Q → QĨJ̃ = µĨJ̃ − µĨµJ̃ (A66)

R → empty 0×M matrix (A67)

and the positivity of the matrix Q is implied by by the positivity of the variance. Then the
result (63) follows from Lemma A1 with α = 1.
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