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Abstract: One of the main necessities for population geneticists is the availability of sensitive statistical
tools that enable to accept or reject the standard Wright-Fisher model of neutral evolution. A number
of statistical tests have been developed to detect specific deviations from the null frequency spectrum
in different directions (e.g., Tajima’s D, Fu and Li’s F and D tests, Fay and Wu’s H). A general
framework exists to generate all neutrality tests that are linear functions of the frequency spectrum.
In this framework, it is possible to develop a family of optimal tests with almost maximum power
against a specific alternative evolutionary scenario. In this paper we provide a thorough discussion
of the structure and properties of linear and nonlinear neutrality tests. First, we present the general
framework for linear tests and emphasise the importance of the property of scalability with the
sample size (that is, the interpretation of the tests should not depend on the sample size), which, if
missing, can lead to errors in interpreting the data. After summarising the motivation and structure of
linear optimal tests, we present a more general framework for the optimisation of linear tests, leading
to a new family of tunable neutrality tests. In a further generalisation, we extend the framework to
nonlinear neutrality tests and we derive nonlinear optimal tests for polynomials of any degree in the
frequency spectrum.

Keywords: coalescent theory; site frequency spectrum; neutrality test; statistical power; summary statistics

1. Introduction

Since the development of molecular genetics techniques allowed to obtain nucleotide
sequences for the study of populations genetics [1], a number of neutrality tests have been
developed with the objective to facilitate the interpretation of an increasing volume of
molecular data. Statistical tests for neutrality have been generated exploiting the different
properties of the stationary neutral model. Examples of tests are the HKA [2], which takes
advantage of the polymorphism/divergence relationship across independent loci in a multi-
locus framework, and the Lewontin—Krakauer test [3], which looks for an unexpected level
of population differentiation in a locus in relation to other loci. Additionally, another family
of popular tests are the ones related to linkage disequilibrium, such as the one developed
by [4], which detects long haplotypes at unusual elevated frequencies in candidate regions.

An important family of these tests, often used as summary statistics, is built on the
frequency spectrum of biallelic polymorphisms. This family includes the well known tests
by Tajima [5], Fu and Li [6], and Fay and Wu [7]. If an outgroup is available, these tests are
based on the unfolded spectrum ¢;, that is, the number of segregating sites with a derived
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allele frequency of i in a sample of (haploid) size n. Without an outgroup, it is not possible
to distinguish derived and ancestral alleles and the only available data correspond to the
folded spectrum #;, that is, the number of segregating sites with a minor allele frequency of
i. The quantities ¢; and #; are all positive and the range of allele frequenciesis1 <i <n —1
for the unfolded spectrum, 1 < i < |n/2] for the folded spectrum. The average spectra for
the standard Wright-Fisher neutral model are given by:

i(n—1) (14 6in—i)

E(@) =0l , E(j)= oL, &
where L is the length of the sequence and § = 2puN,, where y is the mutation rate per base,
p is the ploidy and N, is the effective population size. Note that we define 0 as the rescaled
mutation rate per base and not per sequence. Apart from this, we follow the notation
of [8,9]. Note that the spectra are proportional to 6.

A general framework for linear tests was presented in [8]. The general tests proposed
there were of the form:

Li 0 o,

, T =
\/Val‘(z;-'_ll ij‘:j) 0 \/Var(ZLn/ZJ ]0*77])

that are centred (i.e., they have a null expectation value) if the weights ();, (O} satisfy the

T = )

conditions Z Q = 0and Z n/ 2 Q* 0. This framework allows the construction of
many new neutrahty tests and has been used to obtain optimal tests for specific alternative
scenarios [10]. However, the original framework does not take into account the dependence
of the tests on the sample size, as emphasised in [10]. It is important to choose this
dependence in order to obtain results that are as independent as possible on sample size.
Moreover, the framework presented in [8] covers just a large subfamily of neutrality tests
based on the frequency spectrum, that is, the class of tests that are linear functions of the
spectrum. This subfamily contains almost all the tests that can be found in the literature
with the exception of the G¢, G, tests of Fu [11], which are second order polynomials
in the spectrum whose form is related with Hotelling statistics. Since these G¢, Gy tests
were shown to be quite effective in some scenarios, it would be interesting to build a
general framework for these quadratic (and more generally nonlinear) tests. New optimal
tests based on extensions of the site frequency spectrum [12,13] were recently applied
successfully to the detection of selection pressure on human chromosomal inversions [14].

In this work we provide a detailed study of the properties of the whole family of tests
based on the site frequency spectrum, i.e., focus on the structure and the properties of
neutrality tests that consider the frequency of the variants per position. Technical details
and proofs can be found in Appendices A and B.

We begin with the discussion of the most interesting case, i.e., linear tests. Achaz [8]
developed a general framework for constructing linear tests comparing two different
estimators of variability, which are based on linear combinations of the frequency, each one
containing different weights. We summarise his approach in the Section 2.1.

In Section 2.2, we discuss the importance of scaling the weights with the aim to
avoid a dependence with the sample size. This allows us to interpret the information of
the test in the same way for any sample size analysed. We provide a thorough analysis
of a simple proposal for the scaling of the tests with the sample size. Different scaling
strategies (including alternatives to scaling) are analysed and evaluated, demonstrating
the importance but also the suitability of different weighting methods depending on the
nature of the statistic.

In Section 2.3, we present and expand the theory of optimal tests, i.e., tests that
have maximum power to detect an alternative scenario versus a null scenario, introduced
in [10]. We show that generic linear tests cannot detect arbitrary deviations from the neutral
spectrum, and why tests must be optimised with respect to a specific alternative scenario. A



Genes 2023, 14,1714

30f32

geometrical interpretation of neutrality test is developed, showing how these tests depend
on the differences between the null and the alternative scenario, clarifying the theoretical
basis for these tests.

In Section 2.4, we extend this approach to nonlinear tests that consider different
moments of the frequency spectrum combined in generic polynomials or in power series.
In contrast to linear tests, nonlinear tests are dependent on the level of variability 8 and
thus need an accurate estimation of 6 to have good statistical properties (e.g., unbiased,
high statistical power). These tests are classified in strongly and weakly centred (that is,
having null expectation value). Strongly centred tests are those tests that are centred for
any value for any estimate of 6, even if this estimate is far from the actual value, and thus
are more robust to deviations of 6 estimates than weakly centred tests (simulations shown
already in the Results section (Section 3)). Instead, weakly centred tests are only centred
if the 6 estimate is equal to the actual value, but this feature also makes the tests more
powerful if the inference of 6 is reliable.

In Section 3.1 in the Results, we see some consequences of the framework outlined
in Methods; it is possible to optimise neutrality tests following a general maximisation
approach that depends on the proxy used for the power to reject the null model in the
alternative scenario, which depends on the mean spectra, the covariance matrices, and
the critical p-value used. Moreover, we show that under some conditions, the power
maximisation can be always achieved by tuning a parameter in a new family of linear
“tunable” optimal tests developed here, which depend only on the mean spectra of the
alternative model.

In Section 3.2, we present the results for the power to detect deviations from the neutral
spectrum in coalescent simulations. We show how linear optimal tests have more power
than usual neutrality tests such as Tajima’s D, nonlinear optimal tests are more powerful
than linear ones, and weakly centred tests are more powerful than strongly centred ones if
6 is known.

In summary, our research augments the understanding of neutrality tests, encompassing
weight normalisation, optimal test formulation, and both linear and nonlinear paradigms.
The outcome not only enriches theoretical foundations but also provides novel methodologies
for increasing power and effectiveness of neutrality tests across diverse scenarios.

2. Material and Methods
2.1. Linear Neutrality Tests
General Framework

As discussed by Achaz [8], the general form for linear tests based on the unfolded
spectrum can be written as:

n—1,0).7.
TQ _ 21':1 ZQZél (3)

JFar(z 0g)

where (); is a set of weights satisfying the condition:

Znizo. 4)

This is the most general form if we require that the test is centred and with variance
1, thatis, E(Tn) = 0 and Var(Tq) = 1. The condition of intendedness can be obtained
substituting the spectrum with its average in the standard neutral model, given by the
Equation (1).
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Alternatively, it is sufficient to choose any pair of unbiased estimators of 6 based on
the unfolded spectrum:

. 1=l P 1=l
bo ==Y iwili , Oy ==Y iw ®)
L L&

i=1

with weights wj, w! that obey the conditions:

n—1 n—1
Yw=1, Y w=1 (6)
i=1 i=1

to obtain a new test for neutrality:

é / _ 217'1:_11 1((471 - (Uzl)gl _ Z?:_ll ZQICZ (7)

\/Var W) \/Var (Z}:f jlwj — w]/-)gj) \/Var (2}1;11 ijC]')

that is equivalent to the definition (3) with (); = w; — w/. Therefore a test Ty, is defined by
real vectors () or w, w’ satisfying the above normalisation conditions.

2.2. Sample Size Independent Tests
2.2.1. Scaling of Weights with Sample Size

In this section we would like to remark that there are conditions that have to be im-
posed on the weights ); or w;, w! to ensure that these tests are consistent and meaningful
in their interpretation. In fact, the values (and even the number!) of these weights depend
explicitly on sample size n. Since every conceivable test should be applied to samples of dif-
ferent sizes, then its definition involves a whole family of weights {an) } or {wi(n), w;(n) }
with n = 2,3...00 and to define a test it is necessary to specify how these weights scale
with n.

As an example of the weird effects of some choices of scaling, we consider the test for
admixture of [8]. The weights of this testare w; = (7)27"(1—27"*1)Land w] = 1/(n —1).
Suppose that the population under study shows an excess of alleles of frequency f between
0.3 and 0.4. The average weight of these frequencies, rescaled by the sample size, is 0.5 for
n = 10, but it reduces to —0.75 for n = 100 and to —1.0 for n = 1000. These weights are
largely different, even in sign, therefore a strong excess of alleles in this range of frequency
would show itself as either a positive or a negative value for this test, depending on the
sample size! The reason can be understood by noticing that for n large, the binomial can be
approximated by a Gaussian function of the allele frequencies f = i/n centred in f =1/2
and with variance 1/4n. Therefore this weight function has a strong dependence on n when
considered as a function of f and n. The changes of this weight function with sample size
are apparent in the plot of Figure 1, which shows the actual function (rescaled by sample
size) for n = 101,001,000.

In this example it is apparent that the interpretation of the results of this test depends
on n. This means that the calibration of the test should be different for each possible
sample size.

The weight-consistency requirement that we propose is that the result of the test
should be almost independent of sample size. This requirement is equivalent to a condition
on the scaling of the weights Ql(n) with n. Our proposal for a reasonable requirement on
this scaling is the following: the relative weight of different frequencies in the population
should remain approximately constant while varying the size of the sample. This condition
ensures that at least for sufficiently large 7, the average values of the test on samples of
different size from the same population should be approximately independent on sample
size, i.e., that the test should be weight-consistent. Note that this requirement has to do with
the interpretation of the test, rather than with the usual definition of statistical consistency.
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Tests that are not weight-consistent could be statistically consistent, but the interpretation
of results in the left and right tails would not be assured to be independent of sample size.

25
201
sample size
21957 10
2
[ = 100
© 10 -
1000
5.
0.
0.00 0.25 0.50 0.75 1.00

allele frequency

Figure 1. Illustrative example of the dependence of the weight on sample size: weight () as a function
of i/n for the test for admixture by Achaz, plotted for different sample size n = 10 (blue), 100 (red),
1000 (green).

To determine the scaling, we note that in limit of large 1, the frequency spectrum
approaches a continuum and we can define the weights as functions Q(f) or w(f), w'(f)
with f € (0,1) and fol df Q(f) =0, fol df w(f) = fol df w'(f) = 1. Since the ratio of the
derived allele count and the sample size i/# is an unbiased estimator of the frequency f of
the allele in the population (because E(i) = nf), a simple scaling that satisfies the above
requirement is:

Qf") ~ Q(i/n) or wi(") ~ w(i/n), wl/.(") ~ w'(i/n) (8)
as proposed by some of the authors in [10].

In order to have the above approximate scaling while obeying the condition

Z?;ll 0; = 0, there are two simple weight-consistent forms for the weights:

m _of ! 1 (]
Q; _Q<n)—n_120(n> ©)

j=1

where the last term is a (typically small) correction that enforce centredness of the test, or:

o) — o _ g L) “(x) (10)
T ore(d) mhle(d)

where the denominators are normalisation factors.

Typically, this second form (10) for the scaling is more consistent in practice and it
is implicitly assumed for most of the existing tests. However, the above expressions give
similar numerical results for most choices of the functions Q(f) = w(f) — w'(f). In fact, if
Q(f) is a limited and piecewise-continuous function, the difference between (9) and (10) is
of order O(Q))/n (since it is a factor coming from the discretisation of the frequencies) and
it does not have a relevant impact on the results of the test. Therefore, in these cases the
two scaling relations (9) and (10) are practically equivalent.
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Note that all the tests involving the Watterson estimator (that corresponds to w(f) ~ 1/ f)
have additional subtleties that are discussed in the next section.

Example: Fay and Wu's H test

This test was proposed in [7] to look for an excess of high-frequency derived alleles
as a signal of selection. It can be defined by the weight functions w(f) = 2(1 — f) and
w'(f) = 2f or alternatively w(f) = 1 and w’(f) = 2f. The weights can be found following
Equation (10). The resulting test is:

it Loy i85 — ey Ly 26
\/Var(nll 27;11 S — n(%l) 27;11 j2§j>

The scaling defined in Equation (9), with weight function Q(f) = w(f) — '(f) =1 —2f,
gives precisely the same result.

Ty =

(11)

Example: F(r,7") tests of Fu [15]
This large class of test is based on the comparison of two estimators with weights:

/

Z‘*T l'*?'

/

=S Wisog (12)
2?:11 I E?:f 7

wi

that in the case r,’ < 1 correspond precisely to the scaling (10) suggested above, with
weight functions w(f) = (1 —r)f " and «'(f) = (1 —7')f~". This can be easily verified

by multiplying both the numerator and the denominator of w;, w! by a factor (1—r)/n~",

(1—7+")/n~" respectively. The test by Fay and Wu corresponds actually to F(0, —1).

The cases with r > 1 or ' > 1 involve weight functions with divergent integrals and
will be discussed in the next section.

Note that the same weight functions with the scaling (9) would give rise to a slightly
different test with weights:

o —r)(}i) - " _r,)(;) - ((1 (—nrj%?:lrj—r o a ;nrf 12)7;5]_7) (13)

2/ max(r,r")
7

that is not weight-consistent for weights of low frequency alleles, i.e., withi/n < n
and is therefore less interesting.

Example: Test for bottleneck of Achaz [8]
This test is another example of a test with an unwanted scaling:
et , 1

_ _ 14
Z]r‘lz_lle*“f ST (14)

Wi

The weight function for this test is e=“"fan/(1 — ") — 1 that depends strongly on
n, therefore this test is not weight-consistent in the above sense.
It is easy to build an equivalent test with the correct scaling by choosing the functions
w(f) = pe P /(1 — e P), w'(f) = 1. The resulting weights with the scaling (10) are:
e~Pi/n 1—eP/m

‘ 1
— — —B(i=1)/n I = 1
R R o 1

as discussed before. The optimal value reported in [8] is @ ~ 0.9 for n = 30. This value
corresponds to § ~ 27.
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The test can also be implemented by choosing the scaling (9) and the weight function
Q(f) = w(f) — &' (f) = Be Pf /(1 — eP) — 1. The resulting weights are:

' _ﬁe*ﬁi/n 1 ‘B(l _ efﬁ(lfl/n)) B
@ T1-eh 1= n—1 ((1 — e B)eP/n(1—eB/n) —(n=1)| = (16)

_ Bl—e PO ( L= P pym 1 )

(1—eB)eP/n(1—eB/n)y \1_ e pl-1/n) n—1

that are equivalent to the weights (15) up to an irrelevant multiplicative factor (see Theorem Al).
Therefore, in this case the two choices of scaling give precisely the same result.

2.2.2. Divergent Weights

As discussed above, the two choices of scaling in Equations (9) and (10) do not usually
obtain sensibly different numerical results. However, there are important choices of Q(f)
for which this approximate equivalence between (9) and (10) does not hold. These critical
cases correspond to functions that diverge as 1/ f or faster near f = 0 (or f = 1). This
divergence is not a real feature of the distribution, because the integral has a natural
cutoff at the scale of the inverse population size f,,;;, = 1/N (more precisely, the effective
population size 1/ N,, but this does not affect the discussion). However, in this case the
integral || 11 /N Af Q(f) has a strong dependence on the cutoff 1/ N and therefore the function
Q(f) itself should depend strongly on N to ensure proper normalisation.

If this dependence is contained in a multiplicative term in front of w(f) or w'(f) or
both, then the second term in Equation (9) is not a small correction of order 1/7 as it happens
with simple functions Q)(f), but rather it represents a relevant correction with a strong
dependence on sample size n and population size N. The denominators in Equation (10)
also show a strong dependence on 7 (that could not be avoided anyway) but not on N,
and therefore this second scaling form should be used. The dependence on sample size is
as strong as the dependence of the divergent integral from the cutoff. This can be easily
understood by noticing that the sample size n plays the role of the cutoff in the sum over the
frequencies that are present in the sample, which is the same role played by the population
size N for the whole population; more formally, the denominator in Equation (10) can
be bounded from above and from below by the divergent integral, and therefore the
divergence of the denominator as n — oo will be the same as the divergence of the integral
as its inverse cutoff (that is, N) goes to infinity). For functions diverging as f % with k > 1,
the dependence on n goes as n! =% if k > 1 or log(n) for k = 1. This case always occurs
when the test is built by comparing an estimator of § with the Watterson estimator, which
corresponds to w(f) ~ 1/ f and therefore has a logarithmic dependence on n given by the
usual harmonic factor 4, = Z}:ll 1/j ~log(n) 4+ v+ O(1/n). A well-known example of
this case is Tajima’s D [5].

If the dependence of Q(f) on N is contained in an additive term that does not depend
on f, it is the correction in (9) that does not depend on N and therefore the first scaling
form is more appropriate. We do not know examples of tests of this kind in the literature,
even if the test by Zeng et al. [16] can be interpreted also in this way.

Example: Tajima’s D test

This is the most known test for neutrality based on the frequency spectrum. It is given
by the difference between the Tajima estimator I1 [17] based on the nucleotide pairwise
diversity II and the Watterson estimator 6y [18] based on the number S of segregating
sites, therefore it can be defined by the weight functions w(f) = 2(1 — f) for IT and
w'(f) = 1/flog(N) for the Watterson estimator. The latter function has an integral that
diverges logarithmically near f = 0, and the corresponding dependence on N is contained
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in the factor 1/ log(N) that multiplies w’( f), therefore the scaling (10) should be used. The
result is the usual test:

. Y- 11 il(: 1’ —S/ay, I1—S/a, an
D= =
n—1 2j( Var(IT—S/a,
\/Var(z] l1 n](n ) (;: _ S/(Zn> \/ ( )

Example: Test of Zeng et al. [16]

This test was proposed to look for an excess of high-frequency derived alleles com-
pared to low-frequency alleles. It is defined by the weight functions w(f) = 1/ f log(N)
and w’(f) = 1, the former corresponding to the Watterson estimator. Proceeding as in the
above example, the result is:

S/an — LIS iy

\/Var(S/an 2 k)

Note that, exceptionally, the scaling of this test can also be defined by (9), without
modifying the result. This is a consequence of the two equivalent forms for the weight
function, Q(f) =1/flog(N) —1or Q(f) =1/f —1log(N).

Tp =

(18)

2.2.3. Weights of Singletons

The above scaling (8) is valid in principle for all weights. However, in practice there
is an important exception, that is, the weight ()1 of singletons. This is due to the fact that
for n < N, the number of derived singletons (; is the only estimator that is affected by
very rare derived alleles (and often by sequencing errors, see [19]). More precisely, ¢; is
actually the only estimator sensitive to the deviations from neutrality in alleles of frequency
1/N < f < 1/n, which represent a vast majority of the SNPs in the population and can
contain interesting biological information. Therefore, if the contribution of these alleles is
relevant for the test, we can enhance (or reduce) the weight () by adding a factor (4.

In the approach detailed in the previous sections, this additional contribution to () is needed
to take into account a contribution AQ(f) to Q( f) of the form AQ(f) = QuI(f < ¢) /¢ with
¢ < 1. As far as the maximum sample size never exceeds in practice 1n,,,x < 2/¢, this
function weights positively only alleles that appear as singletons.

Similarly, w; and wj can be enhanced by wys, w/, that correspond to contributions
Aw(f) = wasI(f < )/, AW’ (f) = W) I(f < ¢)/¢. The test of Fu and Li [6] fall into
this case.

A similar argument applies also to the weights of the number of ancestral singletons,
thatis, O,_1, w,_1, w,’kl that can be enhanced by factors s, wys, and w), respectively.
However, this case is more rare, the only interesting example being the tests of Achaz [19]
that avoid sequencing errors by neglecting both derived and ancestral singletons.

Summarising the results up to this section, a test Tq, is completely defined by a function
Q(f) and two parameters Q,, Qs (that could depend on 1) satisfying the conditions:

st"'Qas“‘/olde(f):O (19)

and determining the weights through the formula:

n 1
Ql( ) = Q( ) +Qd5511+0a551n 1= (st+0as+ ZQ(H)) (20)

j=1
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or by a pair of functions w(f), w'(f) and parameters w;, W, Was, Wy satisfying:
1 / / 1 !
wds+wa5+/0 dfw(f):wds+was+/0 df o (f) =1 1)
and resulting in this formula for the scaling of the weights:
ngn) _ wWas0i1 + Wasdipn—1 + w(%) - Whidin + Wesbin—1 + ' (%) )

wds+wgs+z;.:11w(%) w;ﬁwéﬁi}?;f wl(%)

As showed in the examples above and below, most of the tests in the literature have
this general scaling, with the only exceptions the ones contained in [8] that are not weight-
consistent in the above sense.

Example: Fu and Li’s F test

This test looks for an excess of very rare derived alleles as a possible signature of
negative selection [6]. The only nonzero weights are wy; = 1 and «'(f) = 1/flog(N),
while w(f) = wl), = was = wys = 0. The resulting test is:

Tp = ¢1— S/ay (23)

v Var(¢y — S/an)

Note that this test has both singleton weights and a divergent weight function.

Example: Error-corrected tests of Achaz [19]

This class of tests is an attempt to correct for sequencing errors and biases in the data by
removing the alleles where most of the problems manifest themselves, i.e., singletons (both
ancestral and derived). With a slight generalisation of the proposal in [19], the weights
of the singletons are chosen in such a way to cancel precisely the contributions of the

weight functions:
1 1
05 =-0(3)0n=-0(1- 1) 24

1 1 1 1
Wys = —w<n>,wﬂs =—w (1 — n),wéls = —w’<n>,w;s = —w'(l - n) (25)

therefore, the final weights of derived or ancestral singletons are zero. These corrections
can be applied in principle to any weight function.

or:

2.2.4. Alternative Choices of Scaling

The choice of scaling discussed in the previous sections represents a quite simple and
effective way to fix the dependence on n of a newly devised test. However, other choices
are possible whose weights differ from the above ones for small n. The reason is that for
1 not too large, both the variance of order f(1 — f)/n ~ i(n — i)/n® in the estimation of
the frequency f = i/n and the related uncertainty about how the frequencies are actually
weighted in the test become important. This uncertainty originates from the (binomial)
sampling of individuals from the population and there is some degree of arbitrariness in
deciding how to account for it. Moreover, tests that take it into account could be inconsistent
in the above sense.
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A possible choice of scaling that uses the binomial sampling is the following: consid-
ering w(f), w'(f) as frequency distributions, the weights w;, w! are assigned from w(f),
w'(f) through the same binomial sampling that is done for allele spectra, that is:

e df G- ()
Jodf (1= f1 = (1= )" w(f)

o — QA=)
S|
Jodf A= fr=(1=f)m) ' (f)
A simple example of this scaling (but with an highly divergent weight function)

is given by the test for admixture [8] discussed previously. Optimal tests also follow
this scaling.

(26)

(27)

Example: Test for admixture of Achaz [8]

This test is apparently not consistent and it does not follow the scaling (8). However,
it follows another scaling related to the allele sampling. To understand this, consider the
weight functions w(f) = §(f —1/2),w'(f) = 1 where §(f — 1/2) is a Dirac delta function
centred in 1/2. (The Dirac delta §(f — a) is a function whose value is 0 if f # a and +o0
if f = a. The integral [ 6(f —a)g(f)df is g(a) if a is inside the range of integration and
0 otherwise. Technically speaking it is not a mathematical function, but a distribution,
i.e., an element of a dual space of regular functions.) If we scale the weights according to
(26) and (27), that is:

A OV LS N O
Lol n n T 1 —2-n+l
Jodf @—f1—Q1-f)")w(f)
1 ny i1 _ f\n—i, ,f
o - PO 1 -
Jodf A=fr=QQ-fima'(f) "
then the corresponding test is precisely the one proposed by Achaz. Note that the strong

dependence of the test from sample size does not come only from the choice of scaling, but
also from the weight function chosen, that is highly divergent.

(28)

2.3. Optimal Tests
2.3.1. On the Existence of Generic Tests

An interesting question on the way to build good linear tests is the following: do there
exist generic tests? A completely generic test for neutrality should be able to detect any
deviation from the spectrum of the null model that is sufficiently large. Unfortunately,
these tests do not exist. In fact, for every test defined by a set of weights (); it is possible
to find a spectrum ¢; = a/ia, + (1 — a)A; that is maximally different from the standard
spectrum at least in a range of frequencies and is nevertheless undetectable by the test
because its average value on this spectrum is zero. This is expressed in a more formal way
in the following theorem, which shows that even the complete lack of alleles in some range
of frequencies could not be always detected.

Theorem 1. For every set of n real weights O); with ) ; (); = O, there is a set of n real numbers
A; # const/iand a parameter o € [0, 1] that satisfy the conditions:

1
ZIQZAZ =0 , min (DC, + (1 — OC)Al‘> =0 (30)
- i€[ln—1]\ 1an



Genes 2023, 14,1714

11 of 32

The above limitation is not a consequence of the small sample size. This can be seen
for example in the framework of the scaling theory discussed in this paper. In fact, for large
sample sizes, the weights can be approximated by a weight function Q(f). In this context
it is possible to prove the next theorem, that is a continuous equivalent of the previous one.

Theorem 2. For every piece-wise continuous weight function Q(f) € Lh /N such that

fll/N Q(f)df = 0, there is a smooth function A(f) # const/f and a parameter a« € [0,1]
that satisfy the conditions:

1 ) 1
| dfremsm=o fér[})fl]<ﬂclog(N)Hl—a)A(f))—O (1)

Note that in principle this problem can be solved using multiple tests. In fact, multiple
tests should be able to detect any strong deviation from the null spectrum, provided that
the number of these tests is large enough, as can be seen from the following theorem.

Theorem 3. Given at least n — 2 linearly independent sets of n — 1 real weights O3; with }_; (); = 0,
it is not possible to find a set of real numbers A; # const /i such that y_; iQ;A; = 0.

This last theorem is only a formal result and the requirement of n — 2 independent tests
is too strong. In practice, a small (but good) set of tests can detect most of the reasonable
and interesting deviations for realistic spectra.

The above theorems can be extended to the folded spectrum. In this section and the
next ones, we will consider only tests based on the unfolded spectrum. The generalisation
of the discussion to the folded spectrum is usually straightforward after substituting ¢;
(i=1...n—=1)withy; (=1...|n/2)).

2.3.2. Optimal Tests and Their Geometric Structure

From the theorems of the previous section, it is clear that a single test cannot detect
all the possible deviations occurring in complicated evolutionary scenarios. However, it
is still possible to optimise neutrality tests for a specific alternative evolutionary scenario.
A simple optimality condition has been proposed by some of the authors in [10] in order
to maximise the power of the test to detect a fixed alternative scenario. We use a different
notation E() and £() for the expected value with respect to the null scenario (neutral model)
E() and the alternative scenario &(). If the null spectrum is E(&;) = 6L¢? and the expected
spectrum of the alternative scenario is £(&;) = 0L¢; (note that it may include an average
of frequencies in a number of different related scenarios, e.g., averaging over some of
the parameters of the scenario), the condition for optimal tests is the maximisation of the
average result of the test under the alternative scenario:

Y O0LE /&)
vkm(Zﬁfﬂﬁﬂéﬁ

This condition is based on the observation that the tests have mean zero and variance
1; therefore, if the distributions of the results of the tests are similar, the maximisation of the
average value of the test should correspond to the maximisation of the average power of
the test. It is also possible to maximise directly the power of the test, taking into account the
different distribution of the results under the null and the alternative model; this possibility
will be pursued in Section 3.1.

Interestingly, optimal tests show a geometric structure which becomes apparent after
defining the scalar product between spectra:

(€,¢") = Y cic; ¢} (33)
L)

E(Ta) = (32)
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where ci;l is the inverse of the covariance matrix Cov(¢;, ;). Since Cov(¢;, §;) is symmetric
and positive, its inverse is also symmetric and positive, i.e., it is a positive bilinear form,
therefore, the above expression defines a scalar product. Then, the optimal test for an
alternative spectrum ¢ can be written in the elegant form:

TN\ _ 0 0 = 0 =0
= {80) — (e NN EN/(EE%) 58)

UG D) = (00027 (20,69

This expression can be easily obtained as a special case of the general formula (50) that we
will discuss later in the context of nonlinear tests. A direct proof of this result can be found
in [10] after substituting the scalar products with the definition (33).

The numerator of the test is actually the matrix element between ¢ and ¢ of the
linear operator 1 — Pz, where Py is the projection operator along &0 In other words, it is

proportional to the difference between the length of the projection of ¢ on ¢ and the length
of the projection on & of the spectrum obtained by the projection of ¢ on &, as illustrated in
Figure 2.

]
Je

g

Figure 2. Geometrical representation of the numerator of the optimal test T in (34). The length of

the red line segment corresponds to the value of the numerator.

From this geometrical interpretation it is clear that if the spectrum ¢ corresponds to
the null spectrum 0L¢°, then the two projections are equal and the result of the test is zero.
On the other side, if the spectrum is the alternative spectrum 0L¢, then the value of the

test is:
. 0,&))2
7o = GL\/ (& &y - W42 (35)
0 e ey
which is the maximum value over all possible tests in the alternative scenario. The same
expression, but with a minus sign, corresponds to the minimum value.
The denominator of the test is the square root of the matrix element of the linear
operator 1 — Pz between ¢ and itself. Note that both the numerator and the denominator

of the test do not change by adding any (possibly negative) multiple of ¢ to &, because &
lies in the kernel of 1 — Pr. This means that optimal tests depend only on the expected
deviations from the null spectrum in the alternative scenario. The result of the test is
maximum when the deviations of the data from the null spectrum correspond exactly to
the expected ones, and it is minimum when they are opposite to the expected ones.
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2.4. Beyond Linear Neutrality Tests
2.4.1. Quadratic and Nonlinear Tests

Almost all the neutrality tests proposed in the literature are linear in the spectrum ¢;.
As far as we know, there is only one exception, namely the G¢ test of Fu [11]. This test is a
quadratic polynomial reminiscent of Hotelling’s #? statistics for the different components of
the spectra:

n—1

G= ) ;' (G —6LE)) (G — 0LEY) (36)

ij=1

where cl.;l is the inverse of the covariance matrix Cov(¢;, &;). Actually, the test proposed by
Fu is an approximation to this test with a different normalisation, namely:

1 (5 - 0LE0)
; Var Cz) (37)

In this approximation, the off diagonal terms in the covariance can be neglected [9,11].
For large samples, the distribution of the results of the test G tends to a x? distribution with
n — 1 degrees of freedom.

Fu’s approach cannot be extended to general quadratic or higher order tests, because
the distribution of the results of the test would be generally unknown and not positive
definite. For this reason we propose to rescale the tests to have zero mean and variance 1.
With this normalisation, we expect that the distribution would asymptotically converge
to a Gaussian N(0, 1) for all tests. As an example, the (re)normalised version of Fu’s test
would be:

roo Tihey! @ OLE & 6L — (=) o

Ve (S e @ - 018 & — oLeD) - (n— 1)

Since the only difference between this test and the original one is the normalisation
and a shift by a constant factor n — 1, the power of the test is the same.

Now we present a systematic discussion of nonlinear tests that are generic polynomials
(or eventually power series) in the spectrum ¢;. All the tests are rescaled to be centred (i.e.,
to have zero mean) and have variance 1. We denote by p;j... the moments of the spectrum
under the null model, that is, pj... = E(G;$;Ck - - .). With this definition, p; = 6LZY. Note
that all these moments depend on 6. In the approximation of unlinked (independent) sites
and small 6, the second moments are equal to y;; = GLL:,(?&U' + 92L2§?§?.

The weights of general nonlinear tests can depend explicitly on 6, as seen in the
previous example. To compute the values of the tests, the (unknown) parameter 6 is
substituted with an estimator . Unlike the linear case, in this case there are two different
classes of tests, related to the dependence on 8 of the centredness: strongly centred and
weakly centred tests.

Strongly centred tests are tests that are always centred for any value of 8, even if it is
different from the actual value of 6. The general form for strongly centred tests is:

et ofle + ot o g + Dl 08 GEa

Ta = (39)
(1 (2 3
War(zn LolVe+ ot olag +rnl oo+ )
with the real symmetric weights QZ(;,? satisfying the set of conditions:
n—1 1
0=Y ou (m)+201] W, m=1,23.. (40)
i=1 ij=1
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where we denote by y(j’;{) the p-th term of the Taylor expansion with respect to 6L of ;..

(in other words, pjj. . = Y., 0PLP V(]k) , Where the coefficients y(]p )

The sum can be limited to polynormals of some finite order in ¢; or it can be a (convergent)
power series. If we introduce the notation I = ijk. .. to denote a group of nj indices, we
can rewrite the test in the simpler form:

are independent on 6).

"1
\/Var(zl Q{’“(f;.. .g)l)
with the conditions:
=y oy m=1,23... 42)

1
If we constrain these tests to be first order polynomials in §;, we recover the linear case

with le) = ;/&. Note that linear tests are always strongly centred. In fact, in the infinite
site model the spectrum is always proportional to 6, which consequently factorises out by
linearity and therefore has no effect on the centredness.

Weakly centred tests are tests that are centred but not strongly centred, i.e., they are
centred if and only if § = 0. The general form for weakly centred tests is:

'y+zn 1F §1+2?] 11F,] §1€]+Zz]k 1 1]k§1ér](~:’(k+

1":
vwm(v+2”1r1§1 zgﬁr§§£f+zz;1rﬁ§£@r+ )

(43)

with the condition:

0*7+ZH“WA-ZF?w] XZFQ%W+ (44)
i=1 i,j=1 i,jk=1

where the ;. are real symmetric weights, possibly dependent on 6. We can simplify these
expressions using the same notation as above, obtaining the simpler form:

(n1)
Ty = Y+ V(¢ O (45)

Jvar(r+ L on)

with the condition:
0=+ I (46)
I

Additionally, for this class of tests the sum can be limited to polynomials of fixed order
or extended to power series. Note that the rescaled version of the G test by Fu presented
above belongs to this class.

The important difference between strongly and weakly centred tests is related to the
robustness with respect to a biased estimation of 8. Since the class of weakly centred tests
is much larger than the class of strongly centred ones, it should be easier to find powerful
tests in the former class than in the latter. However, even if weakly centred tests could be
more powerful, they would not be centred in scenarios where the value of 6 could not be
estimated precisely. On the other side, strongly centred tests are robust with respect to a
bad estimation of § and therefore they would be preferable in scenarios where an unbiased
estimation of 6 is troublesome.
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The scaling rule (8) can be generalised to nonlinear tests in terms of functions
QU (fy, fa... fuy) for strongly centred and T (fy, fo... f,,) for weakly centred tests:

Qi ~ L Qm)(l,],k,,_) (47)
n nnn

pom o L F(nn(l,f,km) (48)
n nnmn

Fixing the precise scaling is more ambiguous than in the linear case because there are
many different ways to preserve centredness. For this reason, the choice of scaling would
be different for strongly and weakly centred tests and will not be discussed here.

All the possible nonlinear neutrality tests based on the frequency spectrum fall into one
of the two classes presented in this section and have the form (41) and (42), or (45) and (46).
Since both these classes contain an infinite number of possible choices of weights, the
only reasonable criterion to study general nonlinear tests is to select the most powerful
or interesting ones. Apart from the Hotelling choice of Fu [11], the most interesting
choice is apparently the subclass of nonlinear optimal tests, which will be discussed in the
next sections.

2.4.2. Strongly Centred Optimal Tests

As discussed for the linear case, optimal tests depend on the expected alternative
scenario. In the nonlinear case, in principle it would be possible to find generic optimal tests,
but there is no clear framework to obtain them. For this reason we limit our study to the
case of optimal tests for a specific alternative scenario. We denote by fi;jx... = £(GiGiCk - --)
the moments of the alternative spectrum for this scenario.

Since we use the same normalisation for linear and nonlinear tests, the optimality
condition corresponds to the maximisation of the expected value of the test under the
alternative scenario:

SO
\/Var(ZI Qinl)(g- --C)I)

and can be justified as in the linear case.

We denote by I the ordered sequence of the indices contained in I = ijk ... and by o (1)
the number of distinct permutations of the sequence I, i.e., the total number of permutations
divided by the number of permutations that leave I invariant. The main result for the
optimal weights is presented in this theorem.

E(Ta) = (49)

Theorem 4. The maxima of £(Tq) correspond to the weights:
anl) _ (7(1]) ;Ci_ilﬁi —;;;Cfilﬂék)/\/‘kljzkﬂ?)cﬁzl ™ (50)
where the matrices Ci}l and My, satisfy the identities:
%C{Rl (rag — mry) = oy (51)

l

Y M Y e ) = 5y (52)
r iL
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Moreover, the variance of the corresponding unnormalised test under the null model is equal to
its expected value under the alternative model:

Var(ZQ(”‘)gf g) ZQ”I (53)

Note that in general all the weights of the above optimal solution (50) are nonzero,
therefore the maximum average value of the test for optimal tests built on polynomials
of degree d increases with the degree d. This suggests that optimal tests of higher degree
should be more powerful than linear optimal tests.

We provide explicit formulae for the above weights for the optimal quadratic test
in the independent sites approximation. Given E(&;) = u; and £(§;) = fi;, the relevant

weights Q%nl) are
TR 12 %2

( 4 V) 0 Zy ) ]/l% 2124 (54)

_ 2

@_ _(F_ZIn ]
o =5 &)+ &a v) (55)

o 2 _ _
off =3 ym]’_ig —(W—Zﬁ>— i (56)
B AN B Iy B Xy

where ¥, = Zl 1 Hiand X5 = Z” 1 #i- All these formulae are also valid for the folded
spectrum if the appropriate y; and ji; are used. These results are discussed in Appendix A.7.

For optimal tests of higher degree, explicit expressions become cumbersome and the
numerical implementation of the test (50) and the matrices (51) and (52) is more convenient.

2.4.3. Weakly Centred Optimal Tests
In this case the optimality condition corresponds to the maximisation of the expression:

(m1)
+3 T
E(Tr) = vrah (57)
\/Var('y +o "M@ eh)
with the same condition:
0=+ I (58)
1
The simplest case corresponds to a first order polynomial:
n— l (1)
T
T Y+ Gi (59)

2 T e e T

whose maximum corresponds to the optimal weights:

n—1
rl(l) = Z; Cz';l (i —w) E Z Hic ]k — Mk) (60)
]:

j=1k=1
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where ciyl is the inverse matrix of the covariance matrix ¢;; = p;; — p;p;. Since 7y # 0 for
this optimal test, the value of this test for the specific scenario for which it is built is larger
than the value of the corresponding linear optimal test. In fact the maximum of the test is:

JZE: Y — 1) (61)

j=1k=1

that should be compared to the maximum of the optimal test for the linear case, which can
be rewritten as:

2
n—1n-1 (2 Zk 1 Hj¢ k (,u 7,uk))
E(T, inear — il — Y C'il iy — - j (62)
(Ta) ]; k:Zl(V] 1) (e = pe) T e

The comparison shows clearly that nonlinear optimal tests are always more powerful
than linear optimal tests for the same scenario.
The form of the results for the general case is similar to this simple case.

Theorem 5. The maxima of E(Tr) correspond to the weights:

ny 1 — = (11
Iy ):@Zcﬁl(;ﬁ_“i) ' 7:_;’5; ik (i ~ &) ©3

where Cij satisfied the identity:
Y (rag — mry) = 0 (64)
K

Moreover, the variance of the corresponding unnormalised test under the null model is equal to
its expected value under the alternative model:

Var<7+2r"lg g) Zr y1+7 (65)

Also in this case, the power of optimal tests based on polynomials of higher degree
increases with the degree of the polynomial.
It is possible to give explicit expressions of the above matrix and moments for the

optimal quadratic test. The formulae for the weights F%nl) for the unfolded spectrum are:
1
r = (g, +2-% (”1—1)— B 66
AT 1V 0
- 2
@ _ LA
it =3 (Vi 1) 7
r® — (%Q iy (68)
/ Hi Hij
1
¥ = E(ZP—Z;{)(ZH—FZ—ZF,) (69)

These results are valid in the independent sites approximation. They are also valid for
the folded spectrum if the appropriate y; and fi; are used. An expression for the denomina-
tor of the test in the independent sites approximation can be found in Appendix A.7.
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2.5. Empirical Simulations and Code Used for Studying the Statistical Power of Neutrality Tests

We obtained the frequency spectrum of samples for different subdivision and expan-
sion models using one million iterations. Simulation parameters, as well as all the data
frequencies from the simulations are included in Zenodo (DOI: 10.5281/zenodo.8279694).
Linear and nonlinear tests were calculated using our own code, also available in the same
link. Additionally, linear and nonlinear optimal tests are also included in the program
mstatspop (https://github.com/cragenomica/mstatspop, accessed on 15 August 2023), to
facilitate the calculation of these tests by the users.

3. Results
3.1. General Optimisation of Linear Tests

The condition for optimal tests is the maximisation of £(T¢) under the alternative
scenario. However, a better approach would by the maximisation of the power of the
test to reject the neutral model in the alternative scenario, given a choice of significance
level a. This approach requires the knowledge of the form of the probability distributions
p(Ta = t|Hyp), p(Ta = t|H;) where Hy and H; are the null and alternative model, or
equivalently of all the moments of the spectrum E(;¢;x - - .) and (& ¢k - - -)-

Since this information is usually not available in analytic form and hard to obtain
computationally, we limit to the case where the distribution can be well approximated
by a Gaussian both for the null and for the expected model. Then, the only information
needed are the spectra y; = E(;), fi; = £(¢;) and their covariance matrices c;; = E(g;5;) —
E(Gi)E(E)), cij = €(8iGj) — E(E)E(E))-

We expect that both in this approximation and in the general case, the tests with
maximum power will depend on the significance level chosen, therefore limiting the
interest of these test and the possibilities of comparison between results of the test on
samples from different experiments.

We call T = erf (1 — 24) the z-value corresponding to the critical p-value . In the
Gaussian approximation, the power is given by the following expression:

X QY — T [ 1k Gk
(70)
\/ ik 2O

then its maximisation is equivalent to the maximisation of:

L i€ = T/ Lk Ce Q2
j \/ ik € 71
v/ Lk Cik €2

In the general case, the weights corresponding to the maximum depend explicitly on
T and therefore on «. This dependence is expected but unwanted, since the interpretation
of the test depends explicitly on the critical p-value chosen.

There is only one case with weights independent on 7, that is the case of ¢;; (ap-
proximately) proportional to ¢;;. In this case the maximisation of the power of the test is
(approximately) equivalent to the maximisation of the average result of the test, which is
precisely the condition for optimal tests in the sense of [10]. In fact, in this case, optimal tests
correspond precisely to an approximation of the likelihood-ratio tests under the assumption
of Gaussian likelihood functions, and are therefore approximately the most powerful tests
because of the Neyman-Pearson lemma.

As a side note, there is also a regime of values of a such that the weights corresponding
to maximum power are independent of «, that is, the regime 7(«) > 1. In this case the
power is an increasing function of Yik Cik QY e/ L m €1 Qi and the weights are simply
given by the null eigenvector (or linear combination of null eigenvectors) of the matrix
Cij — xcij, where x is uniquely